Strategies for CO2 electroreduction in cation exchange membrane electrode assembly

被引:35
作者
Park, Jaeyong [1 ]
Ko, Young-jin [1 ]
Lim, Chulwan [1 ,2 ]
Kim, Hyunchul [1 ,3 ]
Min, Byoung Koun [1 ,4 ]
Lee, Kwan-Young [2 ,4 ]
Koh, Jai Hyun [1 ,5 ]
Oh, Hyung-Suk [1 ,6 ,7 ]
Lee, Woong Hee [1 ]
机构
[1] Korea Inst Sci & Technol KIST, Clean Energy Res Ctr, Hwarang Ro,14 Gil 5, Seoul 02792, South Korea
[2] Korea Univ, Dept Chem & Biol Engn, 145 Anam Ro, Seoul 02841, South Korea
[3] Korea Univ, Dept Mat Sci & Engn, Anamdong 5 Ga, Seoul 02841, South Korea
[4] Korea Univ, Grad Sch Energy & Environm, Green Sch, 145 Anam Ro, Seoul 02841, South Korea
[5] Korea Univ Sci UST & Technol, KIST Sch, Div Energy & Environm Technol, Seoul 02792, South Korea
[6] Sungkyunkwan Univ, KIST SKKU Carbon Neutral Res Ctr, 2066 Seobu Ro, Suwon 16419, South Korea
[7] Sungkyunkwan Univ SKKU, Sch Adv Mat Sci & Engn, Suwon 16419, South Korea
基金
新加坡国家研究基金会;
关键词
CO 2 reduction reaction (CO 2 RR); Cation Exchange Membrane (CEM); Carbon monoxide; Cross over; Cation effect; CARBON-DIOXIDE REDUCTION; ELECTROCHEMICAL REDUCTION; INSIGHTS; PRODUCTS; DESIGN; SYNGAS;
D O I
10.1016/j.cej.2022.139826
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
For a CO2 reduction reaction (CO2RR), cation-exchange membrane (CEM)-based membrane electrode assembly (MEA) electrolyzers are among the most commercially viable systems; however, the acidic environment in these electrolyzers lowers the CO2RR selectivity. Herein, we outline broad methods for enhancing the performance of CEM MEA electrolyzers by providing an alkaline environment for the cathode. An appropriate amount of anion exchange ionomer, high-alkali cation concentration, and thick catalyst layer with carbon increase the pH gradient for neutralization and minimize the neutralization boundary layer, thus turning most of the catalyst layer into an alkaline environment with high CO2RR selectivity. To take advantage of cation effects, local cation concentrations must be controlled to avoid losing energy efficiency due to high membrane resistance of large cations. Furthermore, the operating conditions of the MEA electrolyzer influence cation concentration. Our study provides various insights into facilitating the development of CEM CO2 MEA electrolyzers for practical application.
引用
收藏
页数:8
相关论文
共 49 条
  • [1] Progress toward Commercial Application of Electrochemical Carbon Dioxide Reduction
    Chen, Chi
    Kotyk, Juliet F. Khosrowabadi
    Sheehan, Stafford W.
    [J]. CHEM, 2018, 4 (11): : 2571 - 2586
  • [2] Origin of Hydrogen Incorporated into Ethylene during Electrochemical CO2 Reduction in Membrane Electrode Assembly
    Choi, Woong
    Park, Seongho
    Jung, Wonsang
    Won, Da Hye
    Na, Jonggeol
    Hwang, Yun Jeong
    [J]. ACS ENERGY LETTERS, 2022, 7 (03) : 939 - 945
  • [3] Design of an electrochemical cell making syngas (CO+H2) from CO2 and H2O reduction at room temperature
    Delacourt, Charles
    Ridgway, Paul L.
    Kerr, John B.
    Newman, John
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (01) : B42 - B49
  • [4] Deng W., 2022, NAT COMMUN, V13, P1
  • [5] CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface
    Dinh, Cao-Thang
    Burdyny, Thomas
    Kibria, Md Golam
    Seifitokaldani, Ali
    Gabardo, Christine M.
    de Arquer, F. Pelayo Garcia
    Kiani, Amirreza
    Edwards, Jonathan P.
    De Luna, Phil
    Bushuyev, Oleksandr S.
    Zou, Chengqin
    Quintero-Bermudez, Rafael
    Pang, Yuanjie
    Sinton, David
    Sargent, Edward H.
    [J]. SCIENCE, 2018, 360 (6390) : 783 - 787
  • [6] Operando cathode activation with alkali metal cations for high current density operation of water-fed zero-gap carbon dioxide electrolysers
    Endrodi, B.
    Samu, A.
    Kecsenovity, E.
    Halmagyi, T.
    Sebok, D.
    Janaky, C.
    [J]. NATURE ENERGY, 2021, 6 (04) : 439 - 448
  • [7] High carbonate ion conductance of a robust PiperION membrane allows industrial current density and conversion in a zero-gap carbon dioxide electrolyzer cell
    Endrodi, B.
    Kecsenovity, E.
    Samu, A.
    Halmagyi, T.
    Rojas-Carbonell, S.
    Wang, L.
    Yan, Y.
    Janaky, C.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (11) : 4098 - 4105
  • [8] Multilayer Electrolyzer Stack Converts Carbon Dioxide to Gas Products at High Pressure with High Efficiency
    Endrodi, B.
    Kecsenovity, E.
    Samu, A.
    Darvas, F.
    Jones, R. V.
    Torok, V.
    Danyi, A.
    Janaky, C.
    [J]. ACS ENERGY LETTERS, 2019, 4 (07) : 1770 - 1777
  • [9] Continuous Carbon Dioxide Electroreduction to Concentrated Multi-carbon Products Using a Membrane Electrode Assembly
    Gabardo, Christine M.
    O'Brien, Colin P.
    Edwards, Jonathan P.
    McCallum, Christopher
    Xu, Yi
    Dinh, Cao-Thang
    Li, Jun
    Sargent, Edward H.
    Sinton, David
    [J]. JOULE, 2019, 3 (11) : 2777 - 2791
  • [10] Combined high alkalinity and pressurization enable efficient CO2 electroreduction to CO
    Gabardo, Christine M.
    Seifitokaldani, Ali
    Edwards, Jonathan P.
    Cao-Thang Dinh
    Burdyny, Thomas
    Kibria, Md Golam
    O'Brien, Colin P.
    Sargent, Edward H.
    Sinton, David
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (09) : 2531 - 2539