ON A CONJECTURE OF ZHUANG AND GAO

被引:8
作者
Qu, Yongke [1 ]
Li, Yuanlin [2 ]
机构
[1] Luoyang Normal Univ, Dept Math, Luoyang 471934, Peoples R China
[2] Brock Univ, Dept Math & Stat, St Catharines, ON L2S 3A1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Erdos-Ginzburg-Ziv theorem; Davenport constant; product-1; sequence; metacyclic group; GINZBURG-ZIV THEOREM; ZERO-SUM PROBLEMS; COMBINATORIAL PROBLEM; DAVENPORT CONSTANT; ERDOS; NUMBER;
D O I
10.4064/cm8685-2-2022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a multiplicatively written finite group. We denote by E(G) the smallest integer t such that every sequence of t elements in G contains a product-1 subsequence of length vertical bar G vertical bar. In 1961, Erdos, Ginzburg and Ziv proved that E(G) <= 2 vertical bar G vertical bar - 1 for every finite abelian group G and this result is known as the Erdos-Ginzburg-Ziv Theorem. In 2005, Zhuang and Gao conjectured that E(G) = d(G) + vertical bar G vertical bar, where d(G) is the small Davenport constant. In this paper, we confirm the conjecture for the case when G = < x, y vertical bar x(p) = y (m) = 1, x(-1) yx = y(r)>, where p is the smallest prime divisor of vertical bar G vertical bar and gcd(p(r - 1), m) = 1.
引用
收藏
页码:113 / 126
页数:14
相关论文
共 21 条