Singular anisotropic equations with a sign-changing perturbation

被引:1
作者
Liu, Zhenhai [1 ,2 ]
Papageorgiou, Nikolaos S. [3 ]
机构
[1] Yulin Normal Univ, Ctr Appl Math Guangxi, Yulin 537000, Peoples R China
[2] Guangxi Minzu Univ, Guangxi Key Lab Univ Optimizat Control & Engn Calc, Nanning 530006, Guangxi, Peoples R China
[3] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
来源
NONLINEAR ANALYSIS-MODELLING AND CONTROL | 2023年 / 28卷 / 06期
关键词
variable exponents; modular function; Luxemburg norm; regularity theory; maximum principle; EXISTENCE;
D O I
10.15388/namc.2023.28.33472
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider an anisotropic Dirichlet problem driven by the variable (p, q)-Laplacian (double phase problem). In the reaction, we have the competing effects of a singular term and of a superlinear perturbation. Contrary to most of the previous papers, we assume that the perturbation changes sign. We prove a multiplicity result producing two positive smooth solutions when the coefficient function in the singular term is small in the L infinity-norm.
引用
收藏
页码:1120 / 1137
页数:18
相关论文
共 17 条
[2]  
Byun SS, 2017, CALC VAR PARTIAL DIF, V56, DOI 10.1007/s00526-017-1152-6
[3]  
CruzUribe DV, 2013, APPL NUMER HARMON AN, DOI 10.1007/978-3-0348-0548-3
[4]   Monotone continuous dependence of solutions of singular quenching parabolic problems [J].
Diaz, Jesus Ildefonso ;
Giacomoni, Jacques .
RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (04) :2593-2602
[5]   Lebesgue and Sobolev Spaces with Variable Exponents [J].
Diening, Lars ;
Harjulehto, Petteri ;
Hasto, Peter ;
Ruzicka, Michael .
LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 :1-+
[6]   Global C1,α regularity for variable exponent elliptic equations in divergence form [J].
Fan, Xianling .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 235 (02) :397-417
[7]   Existence of solutions for p(x)-Laplacian Dirichlet problem [J].
Fan, XL ;
Zhang, QH .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 52 (08) :1843-1852
[8]   Existence of solutions for a nonlinear problem at resonance [J].
Haddaoui, Mustapha ;
Lebrimchi, Hafid ;
Ouhamou, Brahim ;
Tsouli, Najib .
DEMONSTRATIO MATHEMATICA, 2022, 55 (01) :482-489
[9]  
Hu S., 2022, Research Topics in Analysis. Volume I: Grounding Theory, DOI [10.1007/978-3-031-17837-5, DOI 10.1007/978-3-031-17837-5]
[10]   Singular elliptic problems with unbalanced growth and critical exponent [J].
Kumar, Deepak ;
Radulescu, Vicentiu D. ;
Sreenadh, K. .
NONLINEARITY, 2020, 33 (07) :3336-3369