Logical quantum processor based on reconfigurable atom arrays

被引:284
作者
Bluvstein, Dolev [1 ]
Evered, Simon J. [1 ]
Geim, Alexandra A. [1 ]
Li, Sophie H. [1 ]
Zhou, Hengyun [1 ,2 ]
Manovitz, Tom [1 ]
Ebadi, Sepehr [1 ]
Cain, Madelyn [1 ]
Kalinowski, Marcin [1 ]
Hangleiter, Dominik [3 ]
Ataides, J. Pablo Bonilla [1 ]
Maskara, Nishad [1 ]
Cong, Iris [1 ]
Gao, Xun [1 ]
Sales Rodriguez, Pedro [2 ]
Karolyshyn, Thomas [2 ]
Semeghini, Giulia [4 ]
Gullans, Michael J. [3 ]
Greiner, Markus [1 ]
Vuletic, Vladan [5 ,6 ]
Lukin, Mikhail D. [1 ]
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] QuEra Comp Inc, Boston, MA USA
[3] Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, NIST, College Pk, MD USA
[4] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA USA
[5] MIT, Dept Phys, Cambridge, MA USA
[6] MIT, Res Lab Elect, Cambridge, MA USA
基金
美国国家科学基金会;
关键词
COMPUTATIONAL ADVANTAGE; ENTANGLEMENT; TRANSPORT; SIMULATION; SUPREMACY; QUBIT; GATES;
D O I
10.1038/s41586-023-06927-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Suppressing errors is the central challenge for useful quantum computing1, requiring quantum error correction (QEC)2-6 for large-scale processing. However, the overhead in the realization of error-corrected 'logical' qubits, in which information is encoded across many physical qubits for redundancy2-4, poses substantial challenges to large-scale logical quantum computing. Here we report the realization of a programmable quantum processor based on encoded logical qubits operating with up to 280 physical qubits. Using logical-level control and a zoned architecture in reconfigurable neutral-atom arrays7, our system combines high two-qubit gate fidelities8, arbitrary connectivity7,9, as well as fully programmable single-qubit rotations and mid-circuit readout10-15. Operating this logical processor with various types of encoding, we demonstrate improvement of a two-qubit logic gate by scaling surface-code6 distance from d = 3 to d = 7, preparation of colour-code qubits with break-even fidelities5, fault-tolerant creation of logical Greenberger-Horne-Zeilinger (GHZ) states and feedforward entanglement teleportation, as well as operation of 40 colour-code qubits. Finally, using 3D [[8,3,2]] code blocks16,17, we realize computationally complex sampling circuits18 with up to 48 logical qubits entangled with hypercube connectivity19 with 228 logical two-qubit gates and 48 logical CCZ gates20. We find that this logical encoding substantially improves algorithmic performance with error detection, outperforming physical-qubit fidelities at both cross-entropy benchmarking and quantum simulations of fast scrambling21,22. These results herald the advent of early error-corrected quantum computation and chart a path towards large-scale logical processors. A programmable quantum processor based on encoded logical qubits operating with up to 280 physical qubits is described, in which improvement of algorithmic performance using a variety of error-correction codes is enabled.
引用
收藏
页码:58 / 65
页数:28
相关论文
共 50 条
  • [11] Reconfigurable ternary optical processor based on row operation unit
    Song Kai
    Yan LiPing
    [J]. OPTICS COMMUNICATIONS, 2015, 350 : 6 - 12
  • [12] Reconfigurable quantum photonic circuits based on quantum dots
    Mccaw, Adam
    Ewaniuk, Jacob
    Shastri, Bhavin J.
    Rotenberg, Nir
    [J]. NANOPHOTONICS, 2024, 13 (16) : 2951 - 2959
  • [13] Optical lattices for atom-based quantum microscopy
    Klinger, Andreas
    Degenkolb, Skyler
    Gemelke, Nathan
    Soderberg, Kathy-Anne Brickman
    Chin, Cheng
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (01)
  • [14] Quantum optimization of maximum independent set using Rydberg atom arrays
    Ebadi, S.
    Keesling, A.
    Cain, M.
    Wang, T. T.
    Levine, H.
    Bluvstein, D.
    Semeghini, G.
    Omran, A.
    Liu, J-G
    Samajdar, R.
    Luo, X-Z
    Nash, B.
    Gao, X.
    Barak, B.
    Farhi, E.
    Sachdev, S.
    Gemelke, N.
    Zhou, L.
    Choi, S.
    Pichler, H.
    Wang, S-T
    Greiner, M.
    Vuletic, V.
    Lukin, M. D.
    [J]. SCIENCE, 2022, 376 (6598) : 1209 - +
  • [15] A programmable qudit-based quantum processor
    Chi, Yulin
    Huang, Jieshan
    Zhang, Zhanchuan
    Mao, Jun
    Zhou, Zinan
    Chen, Xiaojiong
    Zhai, Chonghao
    Bao, Jueming
    Dai, Tianxiang
    Yuan, Huihong
    Zhang, Ming
    Dai, Daoxin
    Tang, Bo
    Yang, Yan
    Li, Zhihua
    Ding, Yunhong
    Oxenlowe, Leif K.
    Thompson, Mark G.
    O'Brien, Jeremy L.
    Li, Yan
    Gong, Qihuang
    Wang, Jianwei
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [16] Multiplexed telecommunication-band quantum networking with atom arrays in optical cavities
    Huie, William
    Menon, Shankar G.
    Bernien, Hannes
    Covey, Jacob P.
    [J]. PHYSICAL REVIEW RESEARCH, 2021, 3 (04):
  • [17] A Quantum Algorithm Processor Architecture based on Register Reordering
    Nakanishi, Masaki
    Matsuyama, Miki
    Yokoo, Yumi
    [J]. 2014 22ND INTERNATIONAL CONFERENCE ON VERY LARGE SCALE INTEGRATION (VLSI-SOC), 2014,
  • [18] Atom-by-atom assembly of defect-free one-dimensional cold atom arrays
    Endres, Manuel
    Bernien, Hannes
    Keesling, Alexander
    Levine, Harry
    Anschuetz, Eric R.
    Krajenbrink, Alexandre
    Senko, Crystal
    Vuletic, Vladan
    Greiner, Markus
    Lukin, Mikhail D.
    [J]. SCIENCE, 2016, 354 (6315) : 1024 - 1027
  • [19] Multiqubit quantum logical gates between distant quantum modules in a network
    Xu, Shufeng
    Mao, Ya-Li
    Feng, Lixin
    Chen, Hu
    Guo, Bixiang
    Liu, Shiting
    Li, Zheng-Da
    Fan, Jingyun
    [J]. PHYSICAL REVIEW A, 2023, 107 (06)
  • [20] Modeling of measurement-based quantum network coding on a superconducting quantum processor
    Pathumsoot, Poramet
    Matsuo, Takaaki
    Satoh, Takahiko
    Hajdusek, Michal
    Suwanna, Sujin
    Van Meter, Rodney
    [J]. PHYSICAL REVIEW A, 2020, 101 (05)