Logical quantum processor based on reconfigurable atom arrays

被引:462
作者
Bluvstein, Dolev [1 ]
Evered, Simon J. [1 ]
Geim, Alexandra A. [1 ]
Li, Sophie H. [1 ]
Zhou, Hengyun [1 ,2 ]
Manovitz, Tom [1 ]
Ebadi, Sepehr [1 ]
Cain, Madelyn [1 ]
Kalinowski, Marcin [1 ]
Hangleiter, Dominik [3 ]
Ataides, J. Pablo Bonilla [1 ]
Maskara, Nishad [1 ]
Cong, Iris [1 ]
Gao, Xun [1 ]
Sales Rodriguez, Pedro [2 ]
Karolyshyn, Thomas [2 ]
Semeghini, Giulia [4 ]
Gullans, Michael J. [3 ]
Greiner, Markus [1 ]
Vuletic, Vladan [5 ,6 ]
Lukin, Mikhail D. [1 ]
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] QuEra Comp Inc, Boston, MA USA
[3] Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, NIST, College Pk, MD USA
[4] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA USA
[5] MIT, Dept Phys, Cambridge, MA USA
[6] MIT, Res Lab Elect, Cambridge, MA USA
基金
美国国家科学基金会;
关键词
COMPUTATIONAL ADVANTAGE; ENTANGLEMENT; TRANSPORT; SIMULATION; SUPREMACY; QUBIT; GATES;
D O I
10.1038/s41586-023-06927-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Suppressing errors is the central challenge for useful quantum computing1, requiring quantum error correction (QEC)2-6 for large-scale processing. However, the overhead in the realization of error-corrected 'logical' qubits, in which information is encoded across many physical qubits for redundancy2-4, poses substantial challenges to large-scale logical quantum computing. Here we report the realization of a programmable quantum processor based on encoded logical qubits operating with up to 280 physical qubits. Using logical-level control and a zoned architecture in reconfigurable neutral-atom arrays7, our system combines high two-qubit gate fidelities8, arbitrary connectivity7,9, as well as fully programmable single-qubit rotations and mid-circuit readout10-15. Operating this logical processor with various types of encoding, we demonstrate improvement of a two-qubit logic gate by scaling surface-code6 distance from d = 3 to d = 7, preparation of colour-code qubits with break-even fidelities5, fault-tolerant creation of logical Greenberger-Horne-Zeilinger (GHZ) states and feedforward entanglement teleportation, as well as operation of 40 colour-code qubits. Finally, using 3D [[8,3,2]] code blocks16,17, we realize computationally complex sampling circuits18 with up to 48 logical qubits entangled with hypercube connectivity19 with 228 logical two-qubit gates and 48 logical CCZ gates20. We find that this logical encoding substantially improves algorithmic performance with error detection, outperforming physical-qubit fidelities at both cross-entropy benchmarking and quantum simulations of fast scrambling21,22. These results herald the advent of early error-corrected quantum computation and chart a path towards large-scale logical processors. A programmable quantum processor based on encoded logical qubits operating with up to 280 physical qubits is described, in which improvement of algorithmic performance using a variety of error-correction codes is enabled.
引用
收藏
页码:58 / 65
页数:28
相关论文
共 113 条
[1]   Improved simulation of stabilizer circuits [J].
Aaronson, S ;
Gottesman, D .
PHYSICAL REVIEW A, 2004, 70 (05) :052328-1
[2]   Suppressing quantum errors by scaling a surface code logical qubit [J].
Acharya, Rajeev ;
Aleiner, Igor ;
Allen, Richard ;
Andersen, Trond I. ;
Ansmann, Markus ;
Arute, Frank ;
Arya, Kunal ;
Asfaw, Abraham ;
Atalaya, Juan ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Basso, Joao ;
Bengtsson, Andreas ;
Boixo, Sergio ;
Bortoli, Gina ;
Bourassa, Alexandre ;
Bovaird, Jenna ;
Brill, Leon ;
Broughton, Michael ;
Buckley, Bob B. ;
Buell, David A. ;
Burger, Tim ;
Burkett, Brian ;
Bushnell, Nicholas ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Cogan, Josh ;
Collins, Roberto ;
Conner, Paul ;
Courtney, William ;
Crook, Alexander L. ;
Curtin, Ben ;
Debroy, Dripto M. ;
Barba, Alexander Del Toro ;
Demura, Sean ;
Dunsworth, Andrew ;
Eppens, Daniel ;
Erickson, Catherine ;
Faoro, Lara ;
Farhi, Edward ;
Fatemi, Reza ;
Burgos, Leslie Flores ;
Forati, Ebrahim ;
Fowler, Austin G. ;
Foxen, Brooks ;
Giang, William ;
Gidney, Craig ;
Gilboa, Dar .
NATURE, 2023, 614 (7949) :676-+
[3]   Non-Abelian braiding of graph vertices in a superconducting processor [J].
Andersen, T. I. ;
Lensky, Y. D. ;
Kechedzhi, K. ;
Drozdov, I. K. ;
Bengtsson, A. ;
Hong, S. ;
Morvan, A. ;
Mi, X. ;
Opremcak, A. ;
Acharya, R. ;
Allen, R. ;
Ansmann, M. ;
Arute, F. ;
Arya, K. ;
Asfaw, A. ;
Atalaya, J. ;
Babbush, R. ;
Bacon, D. ;
Bardin, J. C. ;
Bortoli, G. ;
Bourassa, A. ;
Bovaird, J. ;
Brill, L. ;
Broughton, M. ;
Buckley, B. B. ;
Buell, D. A. ;
Burger, T. ;
Burkett, B. ;
Bushnell, N. ;
Chen, Z. ;
Chiaro, B. ;
Chik, D. ;
Chou, C. ;
Cogan, J. ;
Collins, R. ;
Conner, P. ;
Courtney, W. ;
Crook, A. L. ;
Curtin, B. ;
Debroy, D. M. ;
Del Toro Barba, A. ;
Demura, S. ;
Dunsworth, A. ;
Eppens, D. ;
Erickson, C. ;
Faoro, L. ;
Farhi, E. ;
Fatemi, R. ;
Ferreira, V. S. ;
Burgos, L. F. .
NATURE, 2023, 618 (7964) :264-+
[4]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[5]   Assembly and coherent control of a register of nuclear spin qubits [J].
Barnes, Katrina ;
Battaglino, Peter ;
Bloom, Benjamin J. ;
Cassella, Kayleigh ;
Coxe, Robin ;
Crisosto, Nicole ;
King, Jonathan P. ;
Kondov, Stanimir S. ;
Kotru, Krish ;
Larsen, Stuart C. ;
Lauigan, Joseph ;
Lester, Brian J. ;
McDonald, Mickey ;
Megidish, Eli ;
Narayanaswami, Sandeep ;
Nishiguchi, Ciro ;
Notermans, Remy ;
Peng, Lucas S. ;
Ryou, Albert ;
Wu, Tsung-Yao ;
Yarwood, Michael .
NATURE COMMUNICATIONS, 2022, 13 (01)
[6]   An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays [J].
Barredo, Daniel ;
de Leseleuc, Sylvain ;
Lienhard, Vincent ;
Lahaye, Thierry ;
Browaeys, Antoine .
SCIENCE, 2016, 354 (6315) :1021-1023
[7]   Two-dimensional transport and transfer of a single atomic qubit in optical tweezers [J].
Beugnon, Jerome ;
Tuchendler, Charles ;
Marion, Harold ;
Gaetan, Alpha ;
Miroshnychenko, Yevhen ;
Sortais, Yvan R. P. ;
Lance, Andrew M. ;
Jones, Matthew P. A. ;
Messin, Gaetan ;
Browaeys, Antoine ;
Grangier, Philippe .
NATURE PHYSICS, 2007, 3 (10) :696-699
[8]   Cost of Universality: A Comparative Study of the Overhead of State Distillation and Code Switching with Color Codes [J].
Beverland, Michael E. ;
Kubica, Aleksander ;
Svore, Krysta M. .
PRX QUANTUM, 2021, 2 (02)
[9]   A quantum processor based on coherent transport of entangled atom arrays [J].
Bluvstein, Dolev ;
Levine, Harry ;
Semeghini, Giulia ;
Wang, Tout T. ;
Ebadi, Sepehr ;
Kalinowski, Marcin ;
Keesling, Alexander ;
Maskara, Nishad ;
Pichler, Hannes ;
Greiner, Markus ;
Vuletic, Vladan ;
Lukin, Mikhail D. .
NATURE, 2022, 604 (7906) :451-+
[10]   Characterizing quantum supremacy in near-term devices [J].
Boixo, Sergio ;
Isakov, Sergei, V ;
Smelyanskiy, Vadim N. ;
Babbush, Ryan ;
Ding, Nan ;
Jiang, Zhang ;
Bremner, Michael J. ;
Martinis, John M. ;
Neven, Hartmut .
NATURE PHYSICS, 2018, 14 (06) :595-600