Suspended nanoporous graphene produced by swift heavy ion bombardment

被引:8
作者
Ivekovic, D. [1 ]
Luketic, K. Tomic [1 ]
Vazquez, H. [2 ]
Leino, A. [2 ]
Djurabekova, F. [2 ]
Nordlund, K. [2 ]
Madauss, L. [3 ,4 ]
Liebsch, Y. [3 ,4 ]
Schleberger, M. [3 ,4 ]
Karlusic, M. [1 ]
机构
[1] Rudjer Boskovic Inst, Bijenicka 54, Zagreb 10000, Croatia
[2] Univ Helsinki, Dept Phys, POB 43, Helsinki 00014, Finland
[3] Univ Duisburg Essen, Fak Phys, D-47057 Duisburg, Germany
[4] Univ Duisburg Essen, CENIDE, Duisburg, Germany
关键词
Swift heavy ion; Nanopore; Graphene; Raman spectroscopy; Molecular dynamics; WATER DESALINATION; RAMAN-SPECTROSCOPY; SINGLE-LAYER; IRRADIATION; TRANSPORT; DEFECTS; GRAPHITE;
D O I
10.1016/j.matchemphys.2023.128729
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the present work, Raman spectroscopy measurements and molecular dynamics simulations were used to investigate damage production in suspended single-layer graphene when irradiated by 23 MeV I, 3 MeV Cu and 18 MeV Cu beams. Despite the high energies of the used swift heavy ion beams, we found no evidence of ion track formation, i.e. all damage imparted to graphene was due to elastic collisions between ions and carbon atoms. Comparing experimental results with simulations, we conclude that a significant amount of energy (at least 40 % in the case of 23 MeV I irradiation) is dissipated away from graphene following the ion impact, and is a likely reason for the absence of ion tracks.
引用
收藏
页数:9
相关论文
共 66 条
  • [1] Ion beam modification of dielectric materials in the electronic excitation regime: Cumulative and exciton models
    Agullo-Lopez, Fernando
    Climent-Font, Aurelio
    Munoz-Martin, Angel
    Olivares, Jose
    Zucchiatti, Alessandro
    [J]. PROGRESS IN MATERIALS SCIENCE, 2016, 76 : 1 - 58
  • [2] Unzipping and folding of graphene by swift heavy ions
    Akcoeltekin, S.
    Bukowska, H.
    Peters, T.
    Osmani, O.
    Monnet, I.
    Alzaher, I.
    d'Etat, B. Ban
    Lebius, H.
    Schleberger, M.
    [J]. APPLIED PHYSICS LETTERS, 2011, 98 (10)
  • [3] Graphene-based nanofiltration nanofiltration membranes for improving salt rejection, water flux and antifouling-A review
    Anand, Anisha
    Unnikrishnan, Binesh
    Mao, Ju-Yi
    Lin, Han-Jia
    Huang, Chih-Ching
    [J]. DESALINATION, 2018, 429 : 119 - 133
  • [4] Banhart F, 2011, ACS NANO, V5, P26, DOI [10.1021/nn102598m, 10.1016/B978-0-08-102053-1.00005-3]
  • [5] Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies
    Cancado, L. G.
    Jorio, A.
    Martins Ferreira, E. H.
    Stavale, F.
    Achete, C. A.
    Capaz, R. B.
    Moutinho, M. V. O.
    Lombardo, A.
    Kulmala, T. S.
    Ferrari, A. C.
    [J]. NANO LETTERS, 2011, 11 (08) : 3190 - 3196
  • [6] Ultimate Permeation Across Atomically Thin Porous Graphene
    Celebi, Kemal
    Buchheim, Jakob
    Wyss, Roman M.
    Droudian, Amirhossein
    Gasser, Patrick
    Shorubalko, Ivan
    Kye, Jeong-Il
    Lee, Changho
    Park, Hyung Gyu
    [J]. SCIENCE, 2014, 344 (6181) : 289 - 292
  • [7] Water Desalination across Nanoporous Graphene
    Cohen-Tanugi, David
    Grossman, Jeffrey C.
    [J]. NANO LETTERS, 2012, 12 (07) : 3602 - 3608
  • [8] Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor
    Das, A.
    Pisana, S.
    Chakraborty, B.
    Piscanec, S.
    Saha, S. K.
    Waghmare, U. V.
    Novoselov, K. S.
    Krishnamurthy, H. R.
    Geim, A. K.
    Ferrari, A. C.
    Sood, A. K.
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (04) : 210 - 215
  • [9] Including the effects of electronic stopping and electron-ion interactions in radiation damage simulations
    Duffy, D. M.
    Rutherford, A. M.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (01)
  • [10] Raman spectroscopy as a versatile tool for studying the properties of graphene
    Ferrari, Andrea C.
    Basko, Denis M.
    [J]. NATURE NANOTECHNOLOGY, 2013, 8 (04) : 235 - 246