The progress of g-C3N4 in photocatalytic H2 evolution: From fabrication to modification

被引:142
|
作者
Ma, Dandan [1 ]
Zhang, Zhuoming [1 ]
Zou, Yajun [1 ]
Chen, Jiantao [1 ]
Shi, Jian-Wen [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Elect Engn, Ctr Nanomat Renewable Energy, State Key Lab Elect Insulat & Power Equipment, Xian 710049, Peoples R China
关键词
GRAPHITIC-CARBON NITRIDE; ENHANCED HYDROGEN EVOLUTION; TEMPLATE-FREE SYNTHESIS; HIGH-SURFACE-AREA; TRI-S-TRIAZINE; VISIBLE-LIGHT; Z-SCHEME; DOPED G-C3N4; H-2; PRODUCTION; CHARGE-TRANSFER;
D O I
10.1016/j.ccr.2023.215489
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Polymeric semiconductor, Graphitic Carbon Nitride (g-C3N4), has emerged as one of the desired materials in photocatalytic hydrogen evolution (PHE) due to its visible-light activity, facile accessibility, low-cost, chemical stability, as well as the unique layered structure. However, pure g-C3N4 photocatalyst suffers from limited photocatalytic performance due to the low efficiency of charge carrier separation and serious charge recombination. Researches over the past few decades have shown that the photocatalytic active of g-C3N4 can be easily affected by many factors including spatial morphology, electronic structure, as well as the interaction between g-C3N4 and other materials. This review gives a comprehensive introduction over the basic properties and the development of g-C3N4 in PHE. A brief history and the basic properties are firstly introduced. After then, this review introduces the fabrication and the limits of g-C3N4 in PHE, followed by the rational methods in improving the photocatalytic active of g-C3N4 including the self-modification strategies (e.g., molecular structure regulation, defect engineering and microstructure manipulation) and the exogenous modification strategies (e.g., the deposition of co-catalyst and the construction of g-C3N4 based heterostructure). Lastly, this review discusses the major challenges and opportunities of g-C3N4 in photocatalytic field. It is believed that this review is benefit for proposing more effective solutions in developing high active g-C3N4 photocatalysts based on a comprehensive understanding of g-C3N4 material.
引用
收藏
页数:55
相关论文
共 50 条
  • [21] Surface N modified 2D g-C3N4 nanosheets derived from DMF for photocatalytic H2 evolution
    Hao, Quanguo
    Song, Yanhua
    Ji, Haiyan
    Mo, Zhao
    She, Xiaojie
    Deng, Jiujun
    Muhmood, Tahir
    Wu, Xiangyang
    Yuan, Shouqi
    Xu, Hui
    Li, Huaming
    APPLIED SURFACE SCIENCE, 2018, 459 : 845 - 852
  • [22] Fabrication of NiCo2S4/N-deficient g-C3N4 for efficient photocatalytic H2 production
    Yang, Tao
    Hu, Xiaoyun
    Fan, Jun
    Sun, Tao
    Liu, Enzhou
    SURFACES AND INTERFACES, 2023, 42
  • [23] Extending the π-Conjugation of g-C3N4 by Incorporating Aromatic Carbon for Photocatalytic H2 Evolution from Aqueous Solution
    Chuang, Po-Kai
    Wu, Kwun-Han
    Yeh, Te-Fu
    Teng, Hsisheng
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2016, 4 (11): : 5989 - 5997
  • [24] Expanding g-C3N4 capabilities for photocatalytic H2 production by modification with Ti3C2Tx MXene
    Potapenko, Kseniya O.
    Vasilchenko, Danila B.
    Kurenkova, Anna Yu.
    Saraev, Andrey A.
    Mishchenko, Denis D.
    Gerasimov, Evgeny Yu.
    Kozlova, Ekaterina A.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2025, 99 : 291 - 300
  • [25] Progress on g-C3N4 based heterojunction photocatalyst for H2 production via Photocatalytic water splitting
    Shuaibu, Abubakar Saidu
    Hafeez, Hafeez Yusuf
    Mohammed, J.
    Dankawu, U. M.
    Ndikilar, Chifu E.
    Suleiman, Abdussalam Balarabe
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1002
  • [26] In situ fabrication of CDs/g-C3N4 hybrids with enhanced interface connection via calcination of the precursors for photocatalytic H2 evolution
    Wang, Ke
    Wang, Xuezhao
    Pan, Hui
    Liu, Yingliang
    Xu, Shengang
    Cao, Shaokui
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (01) : 91 - 99
  • [27] Tailoring Advanced N-Defective and S-Doped g-C3N4 for Photocatalytic H2 Evolution
    Wang, Haitao
    Jiang, Jizhou
    Yu, Lianglang
    Peng, Jiahe
    Song, Zhou
    Xiong, Zhiguo
    Li, Neng
    Xiang, Kun
    Zou, Jing
    Hsu, Jyh-Ping
    Zhai, Tianyou
    SMALL, 2023, 19 (28)
  • [28] S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity
    Wang, Haitao
    Yu, Lianglang
    Jiang, Jizhou
    Arramel
    Zou, Jing
    ACTA PHYSICO-CHIMICA SINICA, 2024, 40 (05)
  • [29] Fabrication of 2D SnS2/g-C3N4 heterojunction with enhanced H2 evolution during photocatalytic water splitting
    Liu, Enzhou
    Chen, Jibing
    Ma, Yongning
    Feng, Juan
    Jia, Jia
    Fan, Jun
    Hu, Xiaoyun
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2018, 524 : 313 - 324
  • [30] Nanosheet-Stacked g-C3N4 Tubes with Carbon Vacancies for Enhanced Photocatalytic H2 Evolution
    Lu, Jin
    Li, Zhaoqian
    Wu, Bo
    Jiang, Zhiqiang
    Pei, Chonghua
    ACS APPLIED NANO MATERIALS, 2025, 8 (12) : 6133 - 6143