Decentralized signal control for multi-modal traffic network: A deep reinforcement learning approach

被引:10
|
作者
Yu, Jiajie [1 ,2 ]
Laharotte, Pierre-Antoine [2 ]
Han, Yu [1 ]
Leclercq, Ludovic [2 ]
机构
[1] Southeast Univ, Sch Transportat, Nanjing 211189, Peoples R China
[2] Univ Gustave Eiffel, ENTPE, LICIT, ECO7, F-69675 Lyon, France
关键词
Traffic Signal Control; Bus Holding; Multi-Modal Network; Deep Reinforcement Learning; Artificial Neural Network; MAX PRESSURE CONTROL; SYNCHRONIZATION; OPTIMIZATION; ALGORITHMS; MODEL;
D O I
10.1016/j.trc.2023.104281
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
Managing traffic flow at intersections in a large-scale network remains challenging. Multi-modal signalized intersections integrate various objectives, including minimizing the queue length and maintaining constant bus headway. Inefficient traffic signals and bus headway control strategies may cause severe traffic jams, high delays for bus passengers, and bus bunching that harms bus line operations. To simultaneously improve the level of service for car traffic and the bus system in a multi-modal network, this paper integrates bus priority and holding with traffic signal control via decentralized controllers based on Reinforcement Learning (RL). The controller agents act and learn from a synthetic traffic environment built with the microscopic traffic simulator SUMO. Action information is shared among agents to achieve cooperation, forming a Multi-Agent Reinforcement Learning (MARL) framework. The agents simultaneously aim to minimize vehicles' total stopping time and homogenize the forward and backward space headways for buses approaching intersections at each decision step. The Deep Q-Network (DQN) algorithm is applied to manage the continuity of the state space. The tradeoff between the bus transit and car traffic objectives is discussed using various numerical experiments. The introduced method is tested in scenarios with distinct bus lane layouts and bus line deployments. The proposed controller outperforms model-based adaptive control methods and the centralized RL method regarding global traffic efficiency and bus transit stability. Furthermore, the remarkable scalability and transferability of trained models are demonstrated by applying them to several different test networks without retraining.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] Learning Decentralized Traffic Signal Controllers With Multi-Agent Graph Reinforcement Learning
    Zhang, Yao
    Yu, Zhiwen
    Zhang, Jun
    Wang, Liang
    Luan, Tom H.
    Guo, Bin
    Yuen, Chau
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (06) : 7180 - 7195
  • [32] Deep Learning vs. Discrete Reinforcement Learning for Adaptive Traffic Signal Control
    Shabestary, Soheil Mohamad Alizadeh
    Abdulhai, Baher
    2018 21ST INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2018, : 286 - 293
  • [33] Deep reinforcement learning for traffic signal control with consistent state and reward design approach
    Bouktif, Salah
    Cheniki, Abderraouf
    Ouni, Ali
    El-Sayed, Hesham
    KNOWLEDGE-BASED SYSTEMS, 2023, 267
  • [34] Optimization Control of Adaptive Traffic Signal with Deep Reinforcement Learning
    Cao, Kerang
    Wang, Liwei
    Zhang, Shuo
    Duan, Lini
    Jiang, Guiminx
    Sfarra, Stefano
    Zhang, Hai
    Jung, Hoekyung
    ELECTRONICS, 2024, 13 (01)
  • [35] Deep Reinforcement Learning-based Traffic Signal Control
    Ruan, Junyun
    Tang, Jinzhuo
    Gao, Ge
    Shi, Tianyu
    Khamis, Alaa
    2023 IEEE INTERNATIONAL CONFERENCE ON SMART MOBILITY, SM, 2023, : 21 - 26
  • [36] Decentralized Learning for Traffic Signal Control
    Prabuchandran, K. J.
    Hemanth, Kumar A. N.
    Bhatnagar, Shalabh
    2015 7TH INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS AND NETWORKS IEEE COMSNETS 2015, 2015,
  • [37] Graph cooperation deep reinforcement learning for ecological urban traffic signal control
    Yan, Liping
    Zhu, Lulong
    Song, Kai
    Yuan, Zhaohui
    Yan, Yunjuan
    Tang, Yue
    Peng, Chan
    APPLIED INTELLIGENCE, 2023, 53 (06) : 6248 - 6265
  • [38] Engineering A Large-Scale Traffic Signal Control: A Multi-Agent Reinforcement Learning Approach
    Chen, Yue
    Li, Changle
    Yue, Wenwei
    Zhang, Hehe
    Mao, Guoqiang
    IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (IEEE INFOCOM WKSHPS 2021), 2021,
  • [39] A Regional Traffic Signal Control Strategy with Deep Reinforcement Learning
    Li, Congcong
    Yan, Fei
    Zhou, Yiduo
    Wu, Jia
    Wang, Xiaomin
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 7690 - 7695
  • [40] XLight: An interpretable multi-agent reinforcement learning approach for traffic signal control
    Cai, Sibin
    Fang, Jie
    Xu, Mengyun
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 273