Decentralized signal control for multi-modal traffic network: A deep reinforcement learning approach

被引:10
|
作者
Yu, Jiajie [1 ,2 ]
Laharotte, Pierre-Antoine [2 ]
Han, Yu [1 ]
Leclercq, Ludovic [2 ]
机构
[1] Southeast Univ, Sch Transportat, Nanjing 211189, Peoples R China
[2] Univ Gustave Eiffel, ENTPE, LICIT, ECO7, F-69675 Lyon, France
关键词
Traffic Signal Control; Bus Holding; Multi-Modal Network; Deep Reinforcement Learning; Artificial Neural Network; MAX PRESSURE CONTROL; SYNCHRONIZATION; OPTIMIZATION; ALGORITHMS; MODEL;
D O I
10.1016/j.trc.2023.104281
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
Managing traffic flow at intersections in a large-scale network remains challenging. Multi-modal signalized intersections integrate various objectives, including minimizing the queue length and maintaining constant bus headway. Inefficient traffic signals and bus headway control strategies may cause severe traffic jams, high delays for bus passengers, and bus bunching that harms bus line operations. To simultaneously improve the level of service for car traffic and the bus system in a multi-modal network, this paper integrates bus priority and holding with traffic signal control via decentralized controllers based on Reinforcement Learning (RL). The controller agents act and learn from a synthetic traffic environment built with the microscopic traffic simulator SUMO. Action information is shared among agents to achieve cooperation, forming a Multi-Agent Reinforcement Learning (MARL) framework. The agents simultaneously aim to minimize vehicles' total stopping time and homogenize the forward and backward space headways for buses approaching intersections at each decision step. The Deep Q-Network (DQN) algorithm is applied to manage the continuity of the state space. The tradeoff between the bus transit and car traffic objectives is discussed using various numerical experiments. The introduced method is tested in scenarios with distinct bus lane layouts and bus line deployments. The proposed controller outperforms model-based adaptive control methods and the centralized RL method regarding global traffic efficiency and bus transit stability. Furthermore, the remarkable scalability and transferability of trained models are demonstrated by applying them to several different test networks without retraining.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] A Multi-Modal Deep Learning Approach for Emotion Recognition
    Shahzad, H. M.
    Bhatti, Sohail Masood
    Jaffar, Arfan
    Rashid, Muhammad
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 36 (02) : 1561 - 1570
  • [22] Robust Deep Reinforcement Learning for Traffic Signal Control
    Kai Liang Tan
    Anuj Sharma
    Soumik Sarkar
    Journal of Big Data Analytics in Transportation, 2020, 2 (3): : 263 - 274
  • [23] Distributed Traffic Signal Control with Fairness Using Deep Reinforcement Learning
    Shirasaka, Shogo
    Kodama, Naoki
    Harada, Taku
    2023 SICE INTERNATIONAL SYMPOSIUM ON CONTROL SYSTEMS, SICE ISCS, 2023, : 117 - 122
  • [24] Traffic Signal Control with Successor Feature-Based Deep Reinforcement Learning Agent
    Szoke, Laszlo
    Aradi, Szilard
    Becsi, Tamas
    ELECTRONICS, 2023, 12 (06)
  • [25] Network-wide traffic signal control optimization using a multi-agent deep reinforcement learning
    Li, Zhenning
    Yu, Hao
    Zhang, Guohui
    Dong, Shangjia
    Xu, Cheng-Zhong
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2021, 125
  • [26] Research on Energy-saving Approach of Multi-modal Vehicles Based on Traffic Signal Control
    Xu, Shengpeng
    Zhang, Chengduo
    Wang, Huicheng
    Xu, Shengtao
    Liu, Wenzhao
    2017 IEEE CONFERENCE ON ENERGY INTERNET AND ENERGY SYSTEM INTEGRATION (EI2), 2017,
  • [27] Optimizing Traffic Signal Control in Mixed Traffic Scenarios: A Predictive Traffic Information-based Deep Reinforcement Learning Approach
    Zhang, Zhengyang
    Zhou, Bin
    Zhang, Bugao
    Cheng, Ping
    Lee, Der-Horng
    Hu, Simon
    2024 FORUM FOR INNOVATIVE SUSTAINABLE TRANSPORTATION SYSTEMS, FISTS, 2024,
  • [28] Improved Deep Reinforcement Learning for Intelligent Traffic Signal Control Using ECA_LSTM Network
    Zai, Wenjiao
    Yang, Dan
    SUSTAINABILITY, 2023, 15 (18)
  • [29] Control of traffic light timing using decentralized deep reinforcement learning
    Maske, Harshal
    Chu, Tianshu
    Kalabic, Uros
    IFAC PAPERSONLINE, 2020, 53 (02): : 14936 - 14941
  • [30] A Multi-phase Intersection Traffic Signal Control Strategy with Deep Reinforcement Learning
    Li, Congcong
    Li, Yuan
    Liu, Guihua
    2018 CHINESE AUTOMATION CONGRESS (CAC), 2018, : 959 - 964