Stabilizing Li Growth Using Li/LLZO Composites for High-Performance Li-Metal-Based Batteries

被引:8
作者
Yoo, Jae Yeon [1 ,2 ]
Kim, Tae Yeong [1 ]
Shin, Dong-Min [1 ]
Kang, Yongku [1 ,3 ]
Wu, Mi Hye [1 ]
Kang, Yun Chan [2 ]
Kim, Do Youb [1 ]
机构
[1] KRICT, Energy Mat Res Ctr, 141 Gajeong Ro, Daejeon 34114, South Korea
[2] Korea Univ, Dept Mat Sci & Engn, Seoul 136713, South Korea
[3] Univ Sci & Technol UST, Dept Adv Mat & Chem Engn, Daejeon 34113, South Korea
基金
新加坡国家研究基金会;
关键词
Li composites; Li-ion migration; Li-metal batteries; LLZO; mechanical kneading; LITHIUM; ANODE;
D O I
10.1002/adfm.202308103
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium (Li) metal is widely acknowledged as the most promising anode material, owing to its high capacity and low potential. However, the practical implementation of Li faces challenges, including uncontrollable dendritic growth and a deficient solid electrolyte interphase (SEI). Here a straightforward method is provided for fabricating Li composites using Al-doped Li7La3Zr2O12 particles (Li/LLZO) with high Li-ion conductivity achieved using a mechanical kneading process. The optimized composite, with 20% LLZO content (Li/LLZO-20), effectively regulates the Li-ion flux, successfully suppressing Li dendritic growth. Using a systematic investigation, it is demonstrated that incorporating LLZO particles significantly accelerates Li-ion migration at the electrode-electrolyte interface, facilitating smooth transport through the LLZO particles. Consequently, Li-metal battery and Li-S battery cells utilizing the Li/LLZO-20 composite anode exhibit remarkable cycle stability compared to cells employing pure Li anodes. Lithium (Li) composites with Li-ionic conductive Al-doped Li7La3Zr2O12 (LLZO) particles (Li/LLZO) are fabricated using a mechanical kneading process. These composites effectively regulate the Li-ion flux and suppress the Li dendritic growth by creating faster pathways for Li-ion migration. As a result, Li-metal-based cells utilizing the Li/LLZO composite anodes demonstrate significantly enhanced cycle stability compared to cells employing pure Li anodes.image
引用
收藏
页数:9
相关论文
共 37 条
[1]   Best Practices for Mitigating Irreversible Capacity Loss of Negative Electrodes in Li-Ion Batteries [J].
Aravindan, Vanchiappan ;
Lee, Yun-Sung ;
Madhavi, Srinivasan .
ADVANCED ENERGY MATERIALS, 2017, 7 (17)
[2]   An Artificial SEI Layer Based on an Inorganic Coordination Polymer with Self-Healing Ability for Long-Lived Rechargeable Lithium-Metal Batteries [J].
Beichel, Witali ;
Skrotzki, Julian ;
Klose, Petra ;
Njel, Christian ;
Butschke, Burkhard ;
Burger, Stephan ;
Liu, Lili ;
Thomann, Ralf ;
Thomann, Yi ;
Biro, Daniel ;
Thiele, Simon ;
Krossing, Ingo .
BATTERIES & SUPERCAPS, 2022, 5 (02)
[3]   Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism [J].
Ding, Fei ;
Xu, Wu ;
Graff, Gordon L. ;
Zhang, Jian ;
Sushko, Maria L. ;
Chen, Xilin ;
Shao, Yuyan ;
Engelhard, Mark H. ;
Nie, Zimin ;
Xiao, Jie ;
Liu, Xingjiang ;
Sushko, Peter V. ;
Liu, Jun ;
Zhang, Ji-Guang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (11) :4450-4456
[4]   Automotive Li-Ion Batteries: Current Status and Future Perspectives [J].
Ding, Yuanli ;
Cano, Zachary P. ;
Yu, Aiping ;
Lu, Jun ;
Chen, Zhongwei .
ELECTROCHEMICAL ENERGY REVIEWS, 2019, 2 (01) :1-28
[5]   Lithium-Graphite Paste: An Interface Compatible Anode for Solid-State Batteries [J].
Duan, Jian ;
Wu, Wangyan ;
Nolan, Adelaide M. ;
Wang, Tengrui ;
Wen, Jiayun ;
Hu, Chenchen ;
Mo, Yifei ;
Luo, Wei ;
Huang, Yunhui .
ADVANCED MATERIALS, 2019, 31 (10)
[6]   Enabling Stable Lithium Metal Anode via 3D Inorganic Skeleton with Superlithiophilic Interphase [J].
Fan, Lei ;
Li, Siyuan ;
Liu, Lei ;
Zhang, Weidong ;
Gao, Lina ;
Fu, Yao ;
Chen, Fang ;
Li, Jing ;
Zhuang, Houlong L. ;
Lu, Yingying .
ADVANCED ENERGY MATERIALS, 2018, 8 (33)
[7]   Lithium Metal-Based Composite: An Emerging Material for Next-Generation Batteries [J].
Huang, Ying ;
Duan, Jian ;
Zheng, Xueying ;
Wen, Jiayun ;
Dai, Yiming ;
Wang, Zhengfeng ;
Luo, Wei ;
Huang, Yunhui .
MATTER, 2020, 3 (04) :1009-1030
[8]   Graphitic Carbon Nitride (g-C3N4): An Interface Enabler for Solid-State Lithium Metal Batteries [J].
Huang, Ying ;
Chen, Bo ;
Duan, Jian ;
Yang, Fei ;
Wang, Tengrui ;
Wang, Zhengfeng ;
Yang, Wenjuan ;
Hu, Chenchen ;
Luo, Wei ;
Huang, Yunhui .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (09) :3699-3704
[9]   A 3D Porous Inverse Opal Ni Structure on a Cu Current Collector for Stable Lithium-Metal Batteries [J].
Jeong, Soo Min ;
Wu, Mihye ;
Kim, Tae Yeong ;
Kim, Dong Hwan ;
Kim, Se-Hee ;
Choi, Hong Kyoon ;
Kang, Yun Chan ;
Kim, Do Youb .
BATTERIES & SUPERCAPS, 2022, 5 (03)
[10]   Extraordinary dendrite-free Li deposition on highly uniform facet wrinkled Cu substrates in carbonate electrolytes [J].
Kim, Ju Ye ;
Chae, Oh B. ;
Wu, Mihye ;
Lim, Eunsoo ;
Kim, Gukbo ;
Hong, Yu Jin ;
Jung, Woo-Bin ;
Choi, Sungho ;
Kim, Do Youb ;
Gereige, Issam ;
Suk, Jungdon ;
Kang, Yongku ;
Jung, Hee-Tae .
NANO ENERGY, 2021, 82