Hyperspectral image classification based on multi-scale hybrid convolutional network

被引:4
作者
Yang, Yun [1 ]
Zhou, Yao [1 ]
Chen, Jia-ning [1 ]
机构
[1] Shaanxi Univ Sci & Technol, Sch Elect Informat & Artificial Intelligence, Xian 710021, Peoples R China
基金
中国国家自然科学基金;
关键词
hyperspectral image; hybrid convolutional network; multi-scale features; attention mechanism;
D O I
10.37188/CJLCD.2022-0225
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
To solve the problems of uneven distribution of hyperspectral image data, insufficient spatial -spectral feature extraction, and network degradation caused by the increase of network layers, a hyperspectral image classification algorithm based on multi-scale hybrid convolutional network is proposed. Firstly, principal component analysis is applied to reduce the dimension of hyperspectral data. Then, the neighborhood extraction is applied to take all pixels in the neighborhood as a sample to supplement the corresponding spatial information. Next, an improved multi-scale hybrid convolutional network is applied to extract features from the preprocessed sample data, and the mixed domain attention mechanism is added to enhance the useful information in the spatial and spectral dimensions. Finally, the Softmax classifier is used to classify each pixel sample. The proposed model is tested on hyperspectral datasets of Indian Pines and Pavia University. Experiments show that the overall classification accuracy, average classification accuracy and Kappa coefficient can reach 0. 987 9, 0. 983 3, 0. 986 2 and 0. 999 0, 0. 996 9, 0. 998 6, respectively. Compared with other classification methods, this algorithm can extract the feature information of hyperspectral images more fully, and achieves better classification results.
引用
收藏
页码:368 / 377
页数:10
相关论文
共 21 条
[11]  
Wang H, 2017, CHIN J LIQ CRYST DIS, V32, P219, DOI 10.3788/YJYXS20173203.0219
[12]  
[王浩 Wang Hao], 2020, [红外技术, Infrared Technology], V42, P264
[13]   CBAM: Convolutional Block Attention Module [J].
Woo, Sanghyun ;
Park, Jongchan ;
Lee, Joon-Young ;
Kweon, In So .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :3-19
[14]   矿山环境污染高光谱遥感监测研究进展 [J].
李迎双 ;
李恒凯 ;
徐丰 .
有色金属科学与工程, 2022, 13 (01) :108-114
[15]   基于高光谱遥感的排土场植被覆盖与植物多样性分析 [J].
许木桑 ;
雷少刚 ;
杨星晨 ;
宫传刚 ;
赵义博 ;
卢晓光 .
生态学杂志, 2022, 41 (03) :603-609
[16]  
[徐沁 Xu Qin], 2021, [计算机辅助设计与图形学学报, Journal of Computer-Aided Design & Computer Graphics], V33, P1726
[17]   Hyperspectral Image Classification With Deep Learning Models [J].
Yang, Xiaofei ;
Ye, Yunming ;
Li, Xutao ;
Lau, Raymond Y. K. ;
Zhang, Xiaofeng ;
Huang, Xiaohui .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (09) :5408-5423
[18]  
[叶珍 Ye Zhen], 2021, [中国图象图形学报, Journal of Image and Graphics], V26, P1737
[19]   Deeply learned broadband encoding stochastic hyperspectral imaging [J].
Zhang, Wenyi ;
Song, Hongya ;
He, Xin ;
Huang, Longqian ;
Zhang, Xiyue ;
Zheng, Junyan ;
Shen, Weidong ;
Hao, Xiang ;
Liu, Xu .
LIGHT-SCIENCE & APPLICATIONS, 2021, 10 (01)
[20]   Novel Semi-Supervised Hyperspectral Image Classification Based on a Superpixel Graph and Discrete Potential Method [J].
Zhao, Yifei ;
Su, Fenzhen ;
Yan, Fengqin .
REMOTE SENSING, 2020, 12 (09)