Tuning topology towards stronger and tougher polymers inspired by semi-crystalline cellulose nanofibrils

被引:5
作者
Zhang, Xizhe [1 ]
Zhu, Shuze [1 ]
机构
[1] Zhejiang Univ, Ctr X Mech,Inst Appl Mech, Dept Engn Mech,Sch Aeronaut & Astronaut, Key Lab Soft Machines & Smart Devices Zhejiang Pro, Hangzhou 310000, Peoples R China
基金
中国国家自然科学基金;
关键词
Cellulose; Hydrogen bonds; Topology engineering; Mechanical properties; Polymer; MOLECULAR-DYNAMICS; THERMOPLASTIC POLYURETHANES; PLASTIC-DEFORMATION; POLYETHYLENE; SIMULATION; STRENGTH; CRYSTALLINE; INTERFACE; TOUGHNESS; FRACTURE;
D O I
10.1016/j.eml.2023.102035
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A long-standing challenge in materials design is to overcome the conflict between strength and toughness, which generally contradict each other. Natural cellulose-enabled advanced materials are promising solutions due to their remarkable capabilities to increase toughness without sacrificing strength. Nevertheless, the lack of mechanistic understanding on their elementary building block, the semi-crystalline cellulose nanofibril, hinders the understanding and designing of stronger and tougher advanced polymeric materials where hydrogen bonds and chain topologies play critical roles. In this study, we address above challenges starting from molecular simulations of semi-crystalline cellulose nanofibrils. It is found that the strength and toughness of cellulose nanofibrils can simultaneously increase by tuning the semi-crystalline topologies, leading to simple topology engineering strategies to design ultra-strong and ultra-tough nanofibril and network structures. The fundamental mechanisms and designing concepts can be readily extended into material systems where secondary bonds are important, enabling a wide range of strong and tough advanced polymeric materials.& COPY; 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 48 条
  • [1] Bioinspired Wood Nanotechnology for Functional Materials
    Berglund, Lars A.
    Burgert, Ingo
    [J]. ADVANCED MATERIALS, 2018, 30 (19)
  • [3] Deconstruction of lignocellulosic biomass with ionic liquids
    Brandt, Agnieszka
    Grasvik, John
    Hallett, Jason P.
    Welton, Tom
    [J]. GREEN CHEMISTRY, 2013, 15 (03) : 550 - 583
  • [4] The molecular origins of twist in cellulose I-beta
    Bu, Lintao
    Himmel, Michael E.
    Crowley, Michael F.
    [J]. CARBOHYDRATE POLYMERS, 2015, 125 : 146 - 152
  • [5] Load-bearing entanglements in polymer glasses
    Bukowski, Cynthia
    Zhang, Tianren
    Riggleman, Robert A.
    Crosby, Alfred J.
    [J]. SCIENCE ADVANCES, 2021, 7 (38)
  • [6] Biopolymers - The structure of starch
    Calvert, P
    [J]. NATURE, 1997, 389 (6649) : 338 - 339
  • [7] Linear, non-linear and plastic bending deformation of cellulose nanocrystals
    Chen, Pan
    Ogawa, Yu
    Nishiyama, Yoshiharu
    Ismail, Ahmed E.
    Mazeau, Karim
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (29) : 19880 - 19887
  • [8] COVID-19 Government Response Event Dataset (CoronaNet v.1.0)
    Cheng, Cindy
    Barcelo, Joan
    Hartnett, Allison Spencer
    Kubinec, Robert
    Messerschmidt, Luca
    [J]. NATURE HUMAN BEHAVIOUR, 2020, 4 (07) : 756 - +
  • [9] ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation
    Chenoweth, Kimberly
    van Duin, Adri C. T.
    Goddard, William A., III
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2008, 112 (05) : 1040 - 1053
  • [10] MOLECULAR MORPHOLOGY IN SEMI-CRYSTALLINE POLYMERS
    FLORY, PJ
    YOON, DY
    [J]. NATURE, 1978, 272 (5650) : 226 - 229