Control over Charge Carrier Mobility in the Hole Transport Layer Enables Fast Colloidal Quantum Dot Infrared Photodetectors

被引:24
作者
Atan, Ozan [1 ]
Pina, Joao M. [1 ]
Parmar, Darshan H. [1 ]
Xia, Pan [1 ]
Zhang, Yangning [1 ]
Gulsaran, Ahmet [2 ,3 ]
Jung, Eui Dae [1 ]
Choi, Dongsun [1 ]
Imran, Muhammad [1 ]
Yavuz, Mustafa [2 ,3 ]
Hoogland, Sjoerd [1 ]
Sargent, Edward H. [1 ]
机构
[1] Univ Toronto, Dept Elect & Comp Engn, Toronto, ON M5S 3G4, Canada
[2] Univ Waterloo, Waterloo Inst Nanotechnol WIN, Waterloo, ON N2L 3G1, Canada
[3] Univ Waterloo, Dept Mech & Mechatron Engn, Waterloo, ON N2L 3G1, Canada
关键词
quantum dots; infrared; photodetectors; carrier mobility; time-of-flight;
D O I
10.1021/acs.nanolett.3c00491
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Solution-processedcolloidal quantum dots (CQDs) are promisingmaterials for photodetectors operating in the short-wavelength infraredregion (SWIR). Devices typically rely on CQD-based hole transportlayers (HTL), such as CQDs treated using 1,2-ethanedithiol. Herein,we find that these HTL materials exhibit low carrier mobility, limitingthe photodiode response speed. We develop instead inverted (p-i-n)SWIR photodetectors operating at 1370 nm, employing NiOx as the HTL,ultimately enabling 4x shorter fall times in photodiodes (similar to 800ns for EDT and similar to 200 ns for NiOx). Optoelectronic simulationsreveal that the high carrier mobility of NiOx enhances the electricfield in the active layer, decreasing the overall transport time andincreasing photodetector response time.
引用
收藏
页码:4298 / 4303
页数:6
相关论文
共 26 条
[1]  
[Anonymous], 2021, EE Times
[2]  
Baker I., 2008, INFRARED TECHNOLOGY
[3]   Reducing charge trapping in PbS colloidal quantum dot solids [J].
Balazs, D. M. ;
Nugraha, M. I. ;
Bisri, S. Z. ;
Sytnyk, M. ;
Heiss, W. ;
Loi, M. A. .
APPLIED PHYSICS LETTERS, 2014, 104 (11)
[4]   Facet-Oriented Coupling Enables Fast and Sensitive Colloidal Quantum Dot Photodetectors [J].
Biondi, Margherita ;
Choi, Min-Jae ;
Wang, Zhibo ;
Wei, Mingyang ;
Lee, Seungjin ;
Choubisa, Hitarth ;
Sagar, Laxmi Kishore ;
Sun, Bin ;
Baek, Se-Woong ;
Chen, Bin ;
Todorovic, Petar ;
Najarian, Amin Morteza ;
Rasouli, Armin Sedighian ;
Nam, Dae-Hyun ;
Vafaie, Maral ;
Li, Yuguang C. ;
Bertens, Koen ;
Hoogland, Sjoerd ;
Voznyy, Oleksandr ;
de Arquer, F. Pelayo Garcia ;
Sargent, Edward H. .
ADVANCED MATERIALS, 2021, 33 (33)
[5]   Preparation and properties of p-type transparent conductive Cu-doped NiO films [J].
Chen, S. C. ;
Kuo, T. Y. ;
Lin, Y. C. ;
Lin, H. C. .
THIN SOLID FILMS, 2011, 519 (15) :4944-4947
[6]   Cascade surface modification of colloidal quantum dot inks enables efficient bulk homojunction photovoltaics [J].
Choi, Min-Jae ;
de Arquer, F. Pelayo Garcia ;
Proppe, Andrew H. ;
Seifitokaldani, Ali ;
Choi, Jongmin ;
Kim, Junghwan ;
Baek, Se-Woong ;
Liu, Mengxia ;
Sun, Bin ;
Biondi, Margherita ;
Scheffel, Benjamin ;
Walters, Grant ;
Nam, Dae-Hyun ;
Jo, Jea Woong ;
Ouellette, Olivier ;
Voznyy, Oleksandr ;
Hoogland, Sjoerd ;
Kelley, Shana O. ;
Jung, Yeon Sik ;
Sargent, Edward H. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[7]   Fast, sensitive and spectrally tuneable colloidal quantum-dot photodetectors [J].
Clifford, Jason P. ;
Konstantatos, Gerasimos ;
Johnston, Keith W. ;
Hoogland, Sjoerd ;
Levina, Larissa ;
Sargent, Edward H. .
NATURE NANOTECHNOLOGY, 2009, 4 (01) :40-44
[8]   Field-emission from quantum-dot-in-perovskite solids [J].
de Arquer, F. Pelayo Garcia ;
Gong, Xiwen ;
Sabatini, Randy P. ;
Liu, Min ;
Kim, Gi-Hwan ;
Sutherland, Brandon R. ;
Voznyy, Oleksandr ;
Xu, Jixian ;
Pang, Yuangjie ;
Hoogland, Sjoerd ;
Sinton, David ;
Sargent, Edward .
NATURE COMMUNICATIONS, 2017, 8
[9]  
Goossens Stijn, 2021, Information Display, V37, P18, DOI [10.1002/msid.1257, 10.1002/msid.1257]
[10]   Effect of growth parameters on the properties of RF-sputtered highly conductive and transparent p-type NiOx films [J].
Grilli, M. L. ;
Menchini, F. ;
Dikonimos, T. ;
Nunziante, P. ;
Pilloni, L. ;
Yilmaz, M. ;
Piegari, A. ;
Mittiga, A. .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2016, 31 (05)