HYPERSPECTRAL IMAGE CLASSIFICATION IN DESERT GRASSLAND BASED ON THREE-DIMENSIONAL DEEP LEARNING MODEL

被引:1
作者
Wang, Ronghua [1 ]
Zhang, Yanbin [2 ]
DU, Jianmin [2 ]
Bi, Yuge [2 ]
机构
[1] Inner Mongolia Tech Coll Mech & Elect, Hohhot, Peoples R China
[2] Inner Mongolia Agr Univ, Hohhot, Peoples R China
来源
INMATEH-AGRICULTURAL ENGINEERING | 2023年 / 69卷 / 01期
基金
中国国家自然科学基金;
关键词
hyperspectral remote sensing; unmanned aerial vehicle; deep learning; classification; desert grassland;
D O I
10.35633/inmateh-69-46
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Identification and classification of vegetation are the basis for grassland degradation monitoring, classification and quantification studies. Here, four deep learning models were used to classify the unmanned aerial vehicle (UAV) hyperspectral remote sensing images of desert grassland. VGG16 and ResNet18 achieved better image classification results for vegetation and bare soil, whereas three-dimensional (3D)-VGG16 and 3D-ResNet18, improved by 3D convolutional kernels, achieved better classification for vegetation, bare soil and small sample features in the images. The number of convolutional kernels, its size and batch size parameters of each model were optimised, and 3D-ResNet18-J had the best classification performance, with an overall classification accuracy of 97.74%. It achieved high precision and efficiency in classifying UAV hyperspectral remote sensing images of desert grassland.
引用
收藏
页码:492 / 500
页数:9
相关论文
共 15 条
[1]   Precise Agriculture: Effective Deep Learning Strategies to Detect Pest Insects [J].
Butera, Luca ;
Ferrante, Alberto ;
Jermini, Mauro ;
Prevostini, Mauro ;
Alippi, Cesare .
IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2022, 9 (02) :246-258
[2]   Agricultural land use change in the Brazilian Pampa Biome: The reduction of natural grasslands [J].
de Oliveira, Tamara Esteves ;
de Freitas, David Santos ;
Gianezini, Miguelangelo ;
Ruviaro, Clandio Favarini ;
Zago, Daniele ;
Mercio, Thomaz Zara ;
Dias, Eduardo Antunes ;
L'ampert, Vinicius do Nascimento ;
Jardim Barcellos, Julio Otavio .
LAND USE POLICY, 2017, 63 :394-400
[3]  
He K., 2015, IEEE C COMPUTER VISI
[4]  
Khekare P., 2022, J COMPUTING CIVIL EN, Vengineering, P36
[5]   Hyperspectral Images Classification Method Based on 3D Octave Convolution and Bi-RNN Attention Network [J].
Liang Lianhui ;
Li Jun ;
Zhang Shaoquan .
ACTA PHOTONICA SINICA, 2021, 50 (09) :276-288
[6]  
[刘忠 Liu Zhong], 2018, [农业工程学报, Transactions of the Chinese Society of Agricultural Engineering], V34, P60
[7]   Deep learning classifiers for hyperspectral imaging: A review [J].
Paoletti, M. E. ;
Haut, J. M. ;
Plaza, J. ;
Plaza, A. .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2019, 158 :279-317
[8]  
Simonyan K, 2015, Arxiv, DOI arXiv:1409.1556
[9]   Image recovery and recognition: a combining method of matrix norm regularisation [J].
Wang, WeiGang ;
Song, Wei ;
Wang, GuangYuan ;
Zeng, Guigen ;
Tian, Feng .
IET IMAGE PROCESSING, 2019, 13 (08) :1246-1253
[10]  
Xiao Z., 2019, J COMPUTER AIDED DES