Artificial Intelligence in CT and MR Imaging for Oncological Applications
被引:30
作者:
Paudyal, Ramesh
论文数: 0引用数: 0
h-index: 0
机构:
Mem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10065 USAMem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10065 USA
Paudyal, Ramesh
[1
]
Shah, Akash D.
论文数: 0引用数: 0
h-index: 0
机构:
Mem Sloan Kettering Canc Ctr, Dept Radiol, New York, NY 10065 USAMem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10065 USA
Shah, Akash D.
[2
]
Akin, Oguz
论文数: 0引用数: 0
h-index: 0
机构:
Mem Sloan Kettering Canc Ctr, Dept Radiol, New York, NY 10065 USAMem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10065 USA
Akin, Oguz
[2
]
Do, Richard K. G.
论文数: 0引用数: 0
h-index: 0
机构:
Mem Sloan Kettering Canc Ctr, Dept Radiol, New York, NY 10065 USAMem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10065 USA
Do, Richard K. G.
[2
]
Konar, Amaresha Shridhar
论文数: 0引用数: 0
h-index: 0
机构:
Mem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10065 USAMem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10065 USA
Konar, Amaresha Shridhar
[1
]
Hatzoglou, Vaios
论文数: 0引用数: 0
h-index: 0
机构:
Mem Sloan Kettering Canc Ctr, Dept Radiol, New York, NY 10065 USAMem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10065 USA
Hatzoglou, Vaios
[2
]
Mahmood, Usman
论文数: 0引用数: 0
h-index: 0
机构:
Mem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10065 USAMem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10065 USA
Mahmood, Usman
[1
]
Lee, Nancy
论文数: 0引用数: 0
h-index: 0
机构:
Mem Sloan Kettering Canc Ctr, Dept Radiat Oncol, New York, NY 10065 USAMem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10065 USA
Lee, Nancy
[3
]
Wong, Richard J.
论文数: 0引用数: 0
h-index: 0
机构:
Mem Sloan Kettering Canc Ctr, Dept Surg, Head & Neck Serv, New York, NY 10065 USAMem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10065 USA
Wong, Richard J.
[4
]
Banerjee, Suchandrima
论文数: 0引用数: 0
h-index: 0
机构:
GE Healthcare, Menlo Pk, CA 94025 USAMem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10065 USA
Banerjee, Suchandrima
[5
]
Shin, Jaemin
论文数: 0引用数: 0
h-index: 0
机构:
GE Healthcare, New York, NY 10032 USAMem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10065 USA
Shin, Jaemin
[6
]
Veeraraghavan, Harini
论文数: 0引用数: 0
h-index: 0
机构:
Mem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10065 USAMem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10065 USA
Veeraraghavan, Harini
[1
]
Shukla-Dave, Amita
论文数: 0引用数: 0
h-index: 0
机构:
Mem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10065 USA
Mem Sloan Kettering Canc Ctr, Dept Radiol, New York, NY 10065 USAMem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10065 USA
Shukla-Dave, Amita
[1
,2
]
机构:
[1] Mem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10065 USA
[2] Mem Sloan Kettering Canc Ctr, Dept Radiol, New York, NY 10065 USA
[3] Mem Sloan Kettering Canc Ctr, Dept Radiat Oncol, New York, NY 10065 USA
[4] Mem Sloan Kettering Canc Ctr, Dept Surg, Head & Neck Serv, New York, NY 10065 USA
The two most common cross-sectional imaging modalities, computed tomography (CT) and magnetic resonance imaging (MRI), have shown enormous utility in clinical oncology. The emergence of artificial intelligence (AI)-based tools in medical imaging has been motivated by the desire for greater efficiency and efficacy in clinical care. Although a growing number of new AI tools for narrow-specific tasks in imaging is highly encouraging, the effort to tackle the key challenges to implementation by the worldwide imaging community has yet to be appropriately addressed. In this review, we discuss a few challenges in using AI tools and offer some potential solutions with examples from lung CT and MRI of the abdomen, pelvis, and head and neck (HN) region. As we advance, AI tools may significantly enhance clinician workflows and clinical decision-making.Abstract: Cancer care increasingly relies on imaging for patient management. The two most common cross-sectional imaging modalities in oncology are computed tomography (CT) and magnetic resonance imaging (MRI), which provide high-resolution anatomic and physiological imaging. Herewith is a summary of recent applications of rapidly advancing artificial intelligence (AI) in CT and MRI oncological imaging that addresses the benefits and challenges of the resultant opportunities with examples. Major challenges remain, such as how best to integrate AI developments into clinical radiology practice, the vigorous assessment of quantitative CT and MR imaging data accuracy, and reliability for clinical utility and research integrity in oncology. Such challenges necessitate an evaluation of the robustness of imaging biomarkers to be included in AI developments, a culture of data sharing, and the cooperation of knowledgeable academics with vendor scientists and companies operating in radiology and oncology fields. Herein, we will illustrate a few challenges and solutions of these efforts using novel methods for synthesizing different contrast modality images, auto-segmentation, and image reconstruction with examples from lung CT as well as abdome, pelvis, and head and neck MRI. The imaging community must embrace the need for quantitative CT and MRI metrics beyond lesion size measurement. AI methods for the extraction and longitudinal tracking of imaging metrics from registered lesions and understanding the tumor environment will be invaluable for interpreting disease status and treatment efficacy. This is an exciting time to work together to move the imaging field forward with narrow AI-specific tasks. New AI developments using CT and MRI datasets will be used to improve the personalized management of cancer patients.
机构:
Kyushu Univ, Grad Sch Med Sci, Dept Hlth Sci, Div Med Quantum Sci,Higashi Ku, 3-1-1 Maidashi, Fukuoka, Fukuoka 8128582, JapanKyushu Univ, Grad Sch Med Sci, Dept Hlth Sci, Div Med Quantum Sci,Higashi Ku, 3-1-1 Maidashi, Fukuoka, Fukuoka 8128582, Japan
Arimura, Hidetaka
论文数: 引用数:
h-index:
机构:
Soufi, Mazen
论文数: 引用数:
h-index:
机构:
Kamezawa, Hidemi
论文数: 引用数:
h-index:
机构:
Ninomiya, Kenta
Yamada, Masahiro
论文数: 0引用数: 0
h-index: 0
机构:
Kyushu Univ, Grad Sch Med Sci, Dept Hlth Sci, Div Med Quantum Sci,Higashi Ku, 3-1-1 Maidashi, Fukuoka, Fukuoka 8128582, JapanKyushu Univ, Grad Sch Med Sci, Dept Hlth Sci, Div Med Quantum Sci,Higashi Ku, 3-1-1 Maidashi, Fukuoka, Fukuoka 8128582, Japan
机构:
Kyushu Univ, Grad Sch Med Sci, Dept Hlth Sci, Div Med Quantum Sci,Higashi Ku, 3-1-1 Maidashi, Fukuoka, Fukuoka 8128582, JapanKyushu Univ, Grad Sch Med Sci, Dept Hlth Sci, Div Med Quantum Sci,Higashi Ku, 3-1-1 Maidashi, Fukuoka, Fukuoka 8128582, Japan
Arimura, Hidetaka
论文数: 引用数:
h-index:
机构:
Soufi, Mazen
论文数: 引用数:
h-index:
机构:
Kamezawa, Hidemi
论文数: 引用数:
h-index:
机构:
Ninomiya, Kenta
Yamada, Masahiro
论文数: 0引用数: 0
h-index: 0
机构:
Kyushu Univ, Grad Sch Med Sci, Dept Hlth Sci, Div Med Quantum Sci,Higashi Ku, 3-1-1 Maidashi, Fukuoka, Fukuoka 8128582, JapanKyushu Univ, Grad Sch Med Sci, Dept Hlth Sci, Div Med Quantum Sci,Higashi Ku, 3-1-1 Maidashi, Fukuoka, Fukuoka 8128582, Japan