A Multi-Label Based Physical Activity Recognition via Cascade Classifier

被引:6
作者
Mo, Lingfei [1 ]
Zhu, Yaojie [1 ]
Zeng, Lujie [1 ]
机构
[1] Southeast Univ, Sch Instrument Sci & Engn, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
human activity recognition; machine learning; cascade classifier; wearable devices; ENSEMBLE; BEHAVIOR; ROBUST; SYSTEM;
D O I
10.3390/s23052593
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Physical activity recognition is a field that infers human activities used in machine learning techniques through wearable devices and embedded inertial sensors of smartphones. It has gained much research significance and promising prospects in the fields of medical rehabilitation and fitness management. Generally, datasets with different wearable sensors and activity labels are used to train machine learning models, and most research has achieved satisfactory performance for these datasets. However, most of the methods are incapable of recognizing the complex physical activity of free living. To address the issue, we propose a cascade classifier structure for sensor-based physical activity recognition from a multi-dimensional perspective, with two types of labels that work together to represent an exact type of activity. This approach employed the cascade classifier structure based on a multi-label system (Cascade Classifier on Multi-label, CCM). The labels reflecting the activity intensity would be classified first. Then, the data flow is divided into the corresponding activity type classifier according to the output of the pre-layer prediction. The dataset of 110 participants has been collected for the experiment on PA recognition. Compared with the typical machine learning algorithms of Random Forest (RF), Sequential Minimal Optimization (SMO) and K Nearest Neighbors (KNN), the proposed method greatly improves the overall recognition accuracy of ten physical activities. The results show that the RF-CCM classifier has achieved 93.94% higher accuracy than the 87.93% obtained from the non-CCM system, which could obtain better generalization performance. The comparison results reveal that the novel CCM system proposed is more effective and stable in physical activity recognition than the conventional classification methods.
引用
收藏
页数:17
相关论文
共 40 条
[1]   Physical Human Activity Recognition Using Wearable Sensors [J].
Attal, Ferhat ;
Mohammed, Samer ;
Dedabrishvili, Mariam ;
Chamroukhi, Faicel ;
Oukhellou, Latifa ;
Amirat, Yacine .
SENSORS, 2015, 15 (12) :31314-31338
[2]  
Ayman A., 2020, P 2019 INT C ADV EME
[3]   An Efficient Human Activity Recognition Framework Based on Wearable IMU Wrist Sensors [J].
Ayman, Ahmed ;
Attalah, Omneya ;
Shaban, Heba .
2019 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS & TECHNIQUES (IST 2019), 2019,
[4]   Window Size Impact in Human Activity Recognition [J].
Banos, Oresti ;
Galvez, Juan-Manuel ;
Damas, Miguel ;
Pomares, Hector ;
Rojas, Ignacio .
SENSORS, 2014, 14 (04) :6474-6499
[5]   Sensor Data Acquisition and Processing Parameters for Human Activity Classification [J].
Bersch, Sebastian D. ;
Azzi, Djamel ;
Khusainov, Rinat ;
Achumba, Ifeyinwa E. ;
Ries, Jana .
SENSORS, 2014, 14 (03) :4239-4270
[6]   A multiple-cascade-classifier system for a robust and partially unsupervised updating of land-cover maps [J].
Bruzzone, L ;
Cossu, R .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2002, 40 (09) :1984-1996
[7]   Optimizing multi-sensor deployment via ensemble pruning for wearable activity recognition [J].
Cao, Jingjing ;
Li, Wenfeng ;
Ma, Congcong ;
Tao, Zhiwen .
INFORMATION FUSION, 2018, 41 :68-79
[8]   On the use of ensemble of classifiers for accelerometer-based activity recognition [J].
Catal, Cagatay ;
Tufekci, Selin ;
Pirmit, Elif ;
Kocabag, Guner .
APPLIED SOFT COMPUTING, 2015, 37 :1018-1022
[9]   Performance Analysis of Smartphone-Sensor Behavior for Human Activity Recognition [J].
Chen, Yufei ;
Shen, Chao .
IEEE ACCESS, 2017, 5 :3095-3110
[10]   A Survey on Activity Detection and Classification Using Wearable Sensors [J].
Cornacchia, Maria ;
Ozcan, Koray ;
Zheng, Yu ;
Velipasalar, Senem .
IEEE SENSORS JOURNAL, 2017, 17 (02) :386-403