On the quantum dynamics of a general time-dependent coupled oscillator

被引:0
|
作者
Zerimeche, R. [1 ,2 ]
Mana, N. [1 ]
Sekhri, M. [1 ]
Amaouche, N. [1 ]
Maamache, M. [1 ]
机构
[1] Univ Ferhat Abbas Setif 1, Fac Sci, Lab Phys Quant & Syst Dynam, Setif 19000, Algeria
[2] Univ Jijel, Phys Dept, Lab Theoret Phys, BP 98, Jijel 18000, Algeria
来源
MODERN PHYSICS LETTERS B | 2023年 / 37卷 / 09期
关键词
Time-dependent quantum system; invariant theory; coupled oscillator; canonical; unitary transformation; HARMONIC-OSCILLATOR; CHARGED-PARTICLE; ERMAKOV SYSTEMS; WAVE-FUNCTIONS; ENTANGLEMENT; MODEL; SYMMETRIES; PROPAGATOR; ELECTRONS; FREQUENCY;
D O I
10.1142/S0217984922502220
中图分类号
O59 [应用物理学];
学科分类号
摘要
By using the Lewis-Riesenfeld invariants theory, we investigate the quantum dynamics of a two-dimensional (2D) time-dependent coupled oscillator. We introduce a unitary transformation and show the conditions under which the invariant operator is uncoupled to describe two simple harmonic oscillators with time-independent frequencies and unit masses. The decouplement allows us to easily obtain the corresponding eigenstates. The generalization to three-dimensional (3D) time-dependent coupled oscillator is briefly discussed where a diagonalized invariant, which is exactly the sum of three simple harmonic oscillators, is obtained under specific conditions on the parameters.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Quantum states of a generalized time-dependent inverted harmonic oscillator
    Pedrosa, IA
    Guedes, I
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2004, 18 (09): : 1379 - 1385
  • [42] Quantum tunneling effect of a time-dependent inverted harmonic oscillator
    Guo, Guang-Jie
    Ren, Zhong-Zhou
    Ju, Guo-Xing
    Guo, Xiao-Yong
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (18)
  • [43] New quantum squeezed states for the time-dependent harmonic oscillator
    Nassar, AB
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2002, 4 (03) : S226 - S228
  • [44] Efficient algebraic solution for a time-dependent quantum harmonic oscillator
    Tibaduiza, Daniel M.
    Pires, Luis
    Rego, Andreson L. C.
    Szilard, Daniela
    Zarro, Carlos
    Farina, Carlos
    Physica Scripta, 2020, 95 (10):
  • [45] QUANTUM HARMONIC-OSCILLATOR WITH TIME-DEPENDENT MASS AND FREQUENCY
    DING, S
    KHAN, RD
    ZHANG, JL
    SHEN, WD
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1995, 34 (03) : 355 - 368
  • [46] Efficient algebraic solution for a time-dependent quantum harmonic oscillator
    Tibaduiza, Daniel M.
    Pires, Luis
    Rego, Andreson L. C.
    Szilard, Daniela
    Zarro, Carlos
    Farina, Carlos
    PHYSICA SCRIPTA, 2020, 95 (10)
  • [47] Quantum and classical geometric phase of the time-dependent harmonic oscillator
    Wang, XB
    Kwek, LC
    Oh, CH
    PHYSICAL REVIEW A, 2000, 62 (03) : 4
  • [48] On the quantum motion of a generalized time-dependent forced harmonic oscillator
    de Lima, Alberes Lopes
    Rosas, Alexandre
    Pedrosa, I. A.
    ANNALS OF PHYSICS, 2008, 323 (09) : 2253 - 2264
  • [49] Quantum phase problem for harmonic and time-dependent oscillator systems
    Gianfreda, M.
    Landolfi, G.
    Paris, M. G. A.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2009, 160 (01) : 925 - 932
  • [50] The Wigner-Vlasov formalism for time-dependent quantum oscillator
    Perepelkin, E. E.
    Sadovnikov, B., I
    Inozemtseva, N. G.
    Korepanova, A. A.
    PHYSICA SCRIPTA, 2023, 98 (10)