Star covers and star partitions of double-split graphs

被引:0
|
作者
Mondal, Joyashree [1 ]
Vijayakumar, S. [1 ]
机构
[1] Indian Inst Informat Technol Design & Mfg IIITDM, Chennai 600127, India
关键词
Star cover; Star partition; Double-split graphs; Polynomial time algorithms; NP-COMPLETENESS; SET; DOMINATION;
D O I
10.1007/s10878-024-01112-2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A graph that is isomorphic to the complete bipartite graph K1,r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1,r}$$\end{document} for some r >= 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\ge 0$$\end{document} is called a star. A collection C={V1, horizontal ellipsis ,Vk}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C} = \{V_1, \ldots , V_k\}$$\end{document} of subsets of the vertex set of a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = (V, E)$$\end{document} is called a star cover of G if each set in the collection induces a star and has V1 boolean OR horizontal ellipsis boolean OR Vk=V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_1\cup \ldots \cup V_k = V$$\end{document}. A star cover C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}$$\end{document} of a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = (V, E)$$\end{document} is called a star partition of G if C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}$$\end{document} is also a partition of V. The problem Star Cover takes a graph G as input and asks for a star cover of G of minimum size. The problem Star Partition takes a graph G as input and asks for a star partition of G of minimum size. From Shalu et al. (Discrete Appl Math 319:81-91, 2022), it follows that both these problems are NP-hard even for bipartite graphs. In this paper, we show that both Star Cover and Star Partition have O(n7)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n<^>7)$$\end{document} time exact algorithms for double-split graphs. Proving that our algorithms indeed have running time omega(n7)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (n<^>7)$$\end{document} necessitates the construction of an intricate infinite family of double-split graphs meeting several requirements. Other contributions of the paper are a simple linear time recognition algorithm for double-split graphs and a useful succinct matrix representation for double-split graphs.
引用
收藏
页数:51
相关论文
共 10 条
  • [1] Star covers and star partitions of double-split graphs
    Joyashree Mondal
    S. Vijayakumar
    Journal of Combinatorial Optimization, 2024, 47
  • [2] Star Covers and Star Partitions of Cographs and Butterfly-free Graphs
    Mondal, Joyashree
    Vijayakumar, S.
    ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2024, 2024, 14508 : 224 - 238
  • [3] On Star Partition of Split Graphs
    Divya, D.
    Vijayakumar, S.
    ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2024, 2024, 14508 : 209 - 223
  • [4] Star partitions on graphs
    Andreatta, G.
    De Francesco, C.
    De Giovanni, L.
    Serafini, P.
    DISCRETE OPTIMIZATION, 2019, 33 : 1 - 18
  • [5] FORBIDDEN INDUCED SUBGRAPHS OF DOUBLE-SPLIT GRAPHS
    Alexeev, Boris
    Fradkin, Alexandra
    Kim, Ilhee
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2012, 26 (01) : 1 - 14
  • [6] Induced star partition of graphs
    Shalu, M. A.
    Vijayakumar, S.
    Sandhya, T. P.
    Mondal, Joyashree
    DISCRETE APPLIED MATHEMATICS, 2022, 319 : 81 - 91
  • [7] The Induced Star Partition of Graphs
    Shalu, M. A.
    Vijayakumar, S.
    Sandhya, T. P.
    ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2019, 2019, 11394 : 16 - 28
  • [8] Star Domination and Star Irredundance in Graphs
    Ramalingam, N.
    Karthikeyan, S.
    Swaminathan, V
    Prabhu, S.
    UTILITAS MATHEMATICA, 2020, 115 : 239 - 249
  • [9] Strong star complements in graphs
    Andelic, Milica
    Rowlinson, Peter
    Stanic, Zoran
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 688 : 179 - 194
  • [10] Distinguishing infinite star-free graphs
    Stawiski, Marcin
    APPLIED MATHEMATICS AND COMPUTATION, 2025, 495