Phases of Wilson lines: conformality and screening

被引:17
作者
Aharony, Ofer [1 ,2 ]
Cuomo, Gabriel [3 ,4 ,5 ,6 ]
Komargodski, Zohar [5 ,6 ]
Mezei, Mark [5 ,7 ]
Raviv-Moshe, Avia [5 ]
机构
[1] Weizmann Inst Sci, Dept Particle Phys & Astrophys, Rehovot, Israel
[2] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA
[3] NYU, Ctr Cosmol & Particle Phys, Dept Phys, New York, NY 10003 USA
[4] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[5] SUNY Stony Brook, Simons Ctr Geometry & Phys, Stony Brook, NY 11794 USA
[6] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA
[7] Univ Oxford, Math Inst, Woodstock Rd, Oxford OX2 6GG, England
基金
以色列科学基金会;
关键词
Wilson; 't Hooft and Polyakov loops; Renormalization Group; Scale and Conformal Symmetries; FIELD-THEORIES; SYMMETRY-BREAKING; GAUGE-THEORY; MONOPOLE; LOOPS; CONFINEMENT; STRINGS; ADS/CFT;
D O I
10.1007/JHEP12(2023)183
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study the rich dynamics resulting from introducing static charged particles (Wilson lines) in 2+1 and 3+1 dimensional gauge theories. Depending on the charges of the external particles, there may be multiple defect fixed points with interesting renormalization group flows connecting them, or an exponentially large screening cloud can develop (defining a new emergent length scale), screening the bare charge entirely or partially. We investigate several examples where the dynamics can be solved in various weak coupling or double scaling limits. Sometimes even the elementary Wilson lines, corresponding to the lowest nontrivial charge, are screened. We consider Wilson lines in 3+1 dimensional gauge theories including massless scalar and fermionic QED4, and also in the N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 supersymmetric Yang-Mills theory. We also consider Wilson lines in 2+1 dimensional conformal gauge theories such as QED3 with bosons or fermions, Chern-Simons-Matter theories, and the effective theory of graphene. Our results in 2+1 dimensions have potential implications for graphene, second-order superconducting phase transitions, etc. Finally, we comment on magnetic line operators in 3+1 dimensions ('t Hooft lines) and argue that our results for the infrared dynamics of electric and magnetic lines are consistent with non-Abelian electric-magnetic duality.
引用
收藏
页数:114
相关论文
共 140 条
[1]  
Affleck I, 1995, ACTA PHYS POL B, V26, P1869
[2]  
Affleck I, 2010, Arxiv, DOI arXiv:0911.2209
[3]   Large N field theories, string theory and gravity [J].
Aharony, O ;
Gubser, SS ;
Maldacena, J ;
Ooguri, H ;
Oz, Y .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 323 (3-4) :183-386
[4]   Phases of Wilson Lines in Conformal Field Theories [J].
Aharony, Ofer ;
Cuomo, Gabriel ;
Komargodski, Zohar ;
Mezei, Mark ;
Raviv-Moshe, Avia .
PHYSICAL REVIEW LETTERS, 2023, 130 (15)
[5]   The holographic dictionary for Beta functions of multi-trace coupling constants [J].
Aharony, Ofer ;
Gur-Ari, Guy ;
Klinghoffer, Nizan .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (05)
[6]   Reading between the lines of four-dimensional gauge theories [J].
Aharony, Ofer ;
Seiberg, Nathan ;
Tachikawa, Yuji .
JOURNAL OF HIGH ENERGY PHYSICS, 2013, (08)
[7]  
Alday LF, 2007, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2007/12/068
[8]   Spectral function of a localized fermion coupled to the Wilson-Fisher conformal field theory [J].
Allais, Andrea ;
Sachdev, Subir .
PHYSICAL REVIEW B, 2014, 90 (03)
[9]   How to construct a gravitating quantum electron star [J].
Allais, Andrea ;
McGreevy, John .
PHYSICAL REVIEW D, 2013, 88 (06)
[10]   Quantum Electron Star [J].
Allais, Andrea ;
McGreevy, John ;
Suh, S. Josephine .
PHYSICAL REVIEW LETTERS, 2012, 108 (23)