Feature Calibrating and Fusing Network for RGB-D Salient Object Detection

被引:19
作者
Zhang, Qiang [1 ,2 ]
Qin, Qi [1 ,2 ]
Yang, Yang [1 ,2 ]
Jiao, Qiang [1 ,2 ]
Han, Jungong [3 ]
机构
[1] Xidian Univ, Key Lab Elect Equipment Struct Design, Minist Educ, Xian, Peoples R China
[2] Xidian Univ, Ctr Complex Syst, Sch Mechanoelect Engn, Xian, Peoples R China
[3] Univ Sheffield, Pathol Dept, Sheffield, England
关键词
Visualization; Object detection; Image synthesis; Feature extraction; Cognition; Saliency detection; Streaming media; Salient object detection; RGB-D images; two-steps sample selection; calibration-then-fusion; region consistency aware loss;
D O I
10.1109/TCSVT.2023.3296581
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Due to their imaging mechanisms and techniques, some depth images inevitably have low visual qualities or have some inconsistent foregrounds with their corresponding RGB images. Directly using such depth images will deteriorate the performance of RGB-D SOD. In view of this, a novel RGB-D salient object detection model is presented, which follows the principle of calibration-then-fusion to effectively suppress the influence of such two types of depth images on final saliency prediction. Specifically, the proposed model is composed of two stages, i.e., an image generation stage and a saliency reasoning stage. The former generates high-quality and foreground-consistent pseudo depth images via an image generation network. While the latter first calibrates the original depth information with the aid of those newly generated pseudo depth images and then performs cross-modal feature fusion for the final saliency reasoning. Especially, in the first stage, a Two-steps Sample Selection (TSS) strategy is employed to select such reliable depth images from the original RGB-D image pairs as supervision information to optimize the image generation network. Afterwards, in the second stage, a Feature Calibrating and Fusing Network (FCFNet) is proposed to achieve the calibration-then-fusion of cross-modal information for the final saliency prediction, which is achieved by a Depth Feature Calibration (DFC) module, a Shallow-level Feature Injection (SFI) module and a Multi-modal Multi-scale Fusion (MMF) module. Moreover, a loss function, i.e., Region Consistency Aware (RCA) loss, is presented as an auxiliary loss for FCFNet to facilitate the completeness of salient objects together with the reduction of background interference by considering the local regional consistency in the saliency maps. Experiments on six benchmark datasets demonstrate the superiorities of our proposed RGB-D SOD model over some state-of-the-arts.
引用
收藏
页码:1493 / 1507
页数:15
相关论文
共 77 条
[1]  
Achanta R, 2009, PROC CVPR IEEE, P1597, DOI 10.1109/CVPRW.2009.5206596
[2]   Cross-modal hierarchical interaction network for RGB-D salient object detection [J].
Bi, Hongbo ;
Wu, Ranwan ;
Liu, Ziqi ;
Zhu, Huihui ;
Zhang, Cong ;
Xiang, Tian -Zhu .
PATTERN RECOGNITION, 2023, 136
[3]   Salient Object Detection: A Benchmark [J].
Borji, Ali ;
Cheng, Ming-Ming ;
Jiang, Huaizu ;
Li, Jia .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (12) :5706-5722
[4]   Large-Scale Machine Learning with Stochastic Gradient Descent [J].
Bottou, Leon .
COMPSTAT'2010: 19TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL STATISTICS, 2010, :177-186
[5]   Depth-Quality-Aware Salient Object Detection [J].
Chen, Chenglizhao ;
Wei, Jipeng ;
Peng, Chong ;
Qin, Hong .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 :2350-2363
[6]   Improved Saliency Detection in RGB-D Images Using Two-Phase Depth Estimation and Selective Deep Fusion [J].
Chen, Chenglizhao ;
Wei, Jipeng ;
Peng, Chong ;
Zhang, Weizhong ;
Qin, Hong .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 :4296-4307
[7]   Three-Stream Attention-Aware Network for RGB-D Salient Object Detection [J].
Chen, Hao ;
Li, Youfu .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (06) :2825-2835
[8]   RGBD Salient Object Detection via Disentangled Cross-Modal Fusion [J].
Chen, Hao ;
Deng, Yongjian ;
Li, Youfu ;
Hung, Tzu-Yi ;
Lin, Guosheng .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 (29) :8407-8416
[9]   Progressively Complementarity-aware Fusion Network for RGB-D Salient Object Detection [J].
Chen, Hao ;
Li, Youfu .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :3051-3060
[10]   Multi-modal fusion network with multi-scale multi-path and cross-modal interactions for RGB-D salient object detection [J].
Chen, Hao ;
Li, Youfu ;
Su, Dan .
PATTERN RECOGNITION, 2019, 86 :376-385