Benchmarking airborne laser scanning tree segmentation algorithms in broadleaf forests shows high accuracy only for canopy trees

被引:15
作者
Cao, Yujie [1 ]
Ball, James G. C. [2 ,3 ]
Coomes, David A. [2 ]
Steinmeier, Leon [4 ]
Knapp, Nikolai [5 ,6 ]
Wilkes, Phil [7 ,8 ]
Disney, Mathias [7 ,8 ]
Calders, Kim [9 ]
Burt, Andrew [7 ]
Lin, Yi [1 ]
Jackson, Toby D. [2 ,10 ]
机构
[1] Tongji Univ, Coll Surveying & Geoinformat, 1239 Siping Rd, Shanghai 200092, Peoples R China
[2] Univ Cambridge, Plant Sci & Conservat Res Inst, Cambridge CB2 3QZ, England
[3] UMR AMAP, CIRAD, Montpellier, France
[4] Helmholtz Inst Freiberg Resource Technol HIF, Dept Modelling & Valuat, Chemnitzer Str 40, D-09599 Freiberg, Germany
[5] Thunen Inst Forest Ecosyst, Alfred-Moller-Str 1, D-16225 Eberswalde, Germany
[6] UFZ Helmholtz Ctr Environm Res, Dept Ecol Modeling, D-04318 Leipzig, Germany
[7] UCL, Dept Geog, London WC1E 6BT, England
[8] UCL, NERC Natl Ctr Earth Observat NCEO, Gower St, London WC1E 6BT, England
[9] Univ Ghent, Dept Environm, CAVElab Computat & Appl Vegetat Ecol, Coupure Links 653, B-9000 Ghent, Belgium
[10] Univ Cambridge, Plant Sci & Conservat Res Inst, Cambridge CB2 3QZ, England
基金
欧洲研究理事会;
关键词
Airborne Laser Scanning; Broadleaf Forest; Individual Tree Segmentation; Benchmark Data; Algorithm Inter-comparison; INDIVIDUAL TREES; CROWN DELINEATION; POINT CLOUDS; LIDAR DATA; EXTRACTION; EFFICIENT; CARBON;
D O I
10.1016/j.jag.2023.103490
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Individual tree segmentation from airborne laser scanning data is a longstanding and important challenge in forest remote sensing. Tree segmentation algorithms are widely available, but robust intercomparison studies are rare due to the difficulty of obtaining reliable reference data. Here we provide a benchmark data set for temperate and tropical broadleaf forests generated from labelled terrestrial laser scanning data. We compared the performance of four widely used tree segmentation algorithms against this benchmark data set. All algorithms performed reasonably well on the canopy trees. The point cloud-based algorithm AMS3D (Adaptive Mean Shift 3D) had the highest overall accuracy, closely followed by the 2D raster based region growing algorithm Dalponte2016 +. However, all algorithms failed to accurately segment the understory trees. This result was consistent across both forest types. This study emphasises the need to assess tree segmentation algorithms directly using benchmark data, rather than comparing with forest indices such as biomass or the number and size distribution of trees. We provide the first openly available benchmark data set for tropical forests and we hope future studies will extend this work to other regions.
引用
收藏
页数:14
相关论文
共 57 条
[1]   Adaptive stopping criterion for top-down segmentation of ALS point clouds in temperate coniferous forests [J].
Amiri, Nina ;
Polewski, Przemyslaw ;
Heurich, Marco ;
Krzystek, Peter ;
Skidmore, Andrew K. .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 141 :265-274
[2]   Multisensor Data Fusion for Improved Segmentation of Individual Tree Crowns in Dense Tropical Forests [J].
Aubry-Kientz, Melaine ;
Laybros, Anthony ;
Weinstein, Ben ;
Ball, James G. C. ;
Jackson, Toby ;
Coomes, David ;
Vincent, Gregoire .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 :3927-3936
[3]   A Comparative Assessment of the Performance of Individual Tree Crowns Delineation Algorithms from ALS Data in Tropical Forests [J].
Aubry-Kientz, Melaine ;
Dutrieux, Raphael ;
Ferraz, Antonio ;
Saatchi, Sassan ;
Hamraz, Hamid ;
Williams, Jonathan ;
Coomes, David ;
Piboule, Alexandre ;
Vincent, Gregoire .
REMOTE SENSING, 2019, 11 (09)
[4]   Layer Stacking: A Novel Algorithm for Individual Forest Tree Segmentation from LiDAR Point Clouds [J].
Ayrey, Elias ;
Fraver, Shawn ;
Kershaw, John A., Jr. ;
Kenefic, Laura S. ;
Hayes, Daniel ;
Weiskittel, Aaron R. ;
Roth, Brian E. .
CANADIAN JOURNAL OF REMOTE SENSING, 2017, 43 (01) :16-27
[5]   Accurate delineation of individual tree crowns in tropical forests from aerial RGB imagery using Mask R-CNN [J].
Ball, James G. C. ;
Hickman, Sebastian H. M. ;
Jackson, Tobias D. D. ;
Koay, Xian Jing ;
Hirst, James ;
Jay, William ;
Archer, Matthew ;
Aubry-Kientz, Melaine ;
Vincent, Gregoire ;
Coomes, David A. A. .
REMOTE SENSING IN ECOLOGY AND CONSERVATION, 2023, 9 (05) :641-655
[6]   Extracting individual trees from lidar point clouds using treeseg [J].
Burt, Andrew ;
Disney, Mathias ;
Calders, Kim .
METHODS IN ECOLOGY AND EVOLUTION, 2019, 10 (03) :438-445
[7]  
Butt N., 2009, Rep
[8]   Realistic Forest Stand Reconstruction from Terrestrial LiDAR for Radiative Transfer Modelling [J].
Calders, Kim ;
Origo, Niall ;
Burt, Andrew ;
Disney, Mathias ;
Nightingale, Joanne ;
Raumonen, Pasi ;
Akerblom, Markku ;
Malhi, Yadvinder ;
Lewis, Philip .
REMOTE SENSING, 2018, 10 (06)
[9]   MEAN SHIFT, MODE SEEKING, AND CLUSTERING [J].
CHENG, YZ .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1995, 17 (08) :790-799
[10]   Area-based vs tree-centric approaches to mapping forest carbon in Southeast Asian forests from airborne laser scanning data [J].
Coomes, David A. ;
Dalponte, Michele ;
Jucker, Tommaso ;
Asner, Gregory P. ;
Banin, Lindsay F. ;
Burslem, David F. R. P. ;
Lewis, Simon L. ;
Nilus, Reuben ;
Phillips, Oliver L. ;
Phua, Mui-How ;
Qie, Lan .
REMOTE SENSING OF ENVIRONMENT, 2017, 194 :77-88