Self-supervised learning representation for abnormal acoustic event detection based on attentional contrastive learning

被引:1
|
作者
Wei, Juan [1 ]
Zhang, Qian [1 ]
Ning, Weichen [2 ]
机构
[1] Xidian Univ, Sch Commun Engn, Xian 710071, Peoples R China
[2] Hong Kong Polytech Univ, Fac Engn, Dept Comp, HongKong 100872, Peoples R China
关键词
Contrastive learning; Self -supervised learning; Attention mechanism; Abnormal acoustic event detection; FUSION;
D O I
10.1016/j.dsp.2023.104199
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Most abnormal acoustic event detection (AAED) is completed by supervised training of deep learning methods, but manually labeled samples are costly and scarce. This work proposes a self-supervised learning representation for AAED based on contrastive learning to overcome the abovementioned problem. Auditory and visual data augmentations are applied simultaneously to create positive sample pairs. An attention mechanism is introduced into the encoder during self-supervised pre-training. A comparison between fused features by discriminant correlation analysis and a single feature is made to verify the ability of feature grasping for the self-supervised pre-trained model. The pre-training is completed on an abnormal acoustic dataset with noise. Research results show that the self-supervised pre-trained model can achieve an accuracy of 87.72% in linear evaluation and 88.70% in the downstream task with a pure small AAED dataset, which directly exceeds the results of supervised learning. This work releases the stress of the demand for abnormal acoustic event labels.(c) 2023 Published by Elsevier Inc.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] SELF-SUPERVISED ACOUSTIC ANOMALY DETECTION VIA CONTRASTIVE LEARNING
    Hojjati, Hadi
    Armanfard, Narges
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 3253 - 3257
  • [2] Multiple representation contrastive self-supervised learning for pulmonary nodule detection
    Torki, Asghar
    Adibi, Peyman
    Kashani, Hamidreza Baradaran
    KNOWLEDGE-BASED SYSTEMS, 2024, 301
  • [3] CONTRASTIVE HEARTBEATS: CONTRASTIVE LEARNING FOR SELF-SUPERVISED ECG REPRESENTATION AND PHENOTYPING
    Wei, Crystal T.
    Hsieh, Ming-En
    Liu, Chien-Liang
    Tseng, Vincent S.
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 1126 - 1130
  • [4] CARLA: Self-supervised contrastive representation learning for time series anomaly detection
    Darban, Zahra Zamanzadeh
    Webb, Geoffrey I.
    Pan, Shirui
    Aggarwal, Charu C.
    Salehi, Mahsa
    PATTERN RECOGNITION, 2025, 157
  • [5] Contrastive Self-supervised Representation Learning Using Synthetic Data
    She, Dong-Yu
    Xu, Kun
    INTERNATIONAL JOURNAL OF AUTOMATION AND COMPUTING, 2021, 18 (04) : 556 - 567
  • [6] Contrastive Self-Supervised Learning With Smoothed Representation for Remote Sensing
    Jung, Heechul
    Oh, Yoonju
    Jeong, Seongho
    Lee, Chaehyeon
    Jeon, Taegyun
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [7] Self-supervised Graph-level Representation Learning with Adversarial Contrastive Learning
    Luo, Xiao
    Ju, Wei
    Gu, Yiyang
    Mao, Zhengyang
    Liu, Luchen
    Yuan, Yuhui
    Zhang, Ming
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2024, 18 (02)
  • [8] Contrastive Self-supervised Representation Learning Using Synthetic Data
    Dong-Yu She
    Kun Xu
    International Journal of Automation and Computing, 2021, 18 : 556 - 567
  • [9] Contrastive Self-supervised Representation Learning Using Synthetic Data
    Dong-Yu She
    Kun Xu
    International Journal of Automation and Computing , 2021, (04) : 556 - 567
  • [10] Mixing up contrastive learning: Self-supervised representation learning for time series
    Wickstrom, Kristoffer
    Kampffmeyer, Michael
    Mikalsen, Karl Oyvind
    Jenssen, Robert
    PATTERN RECOGNITION LETTERS, 2022, 155 : 54 - 61