Entropic Density Functional Theory

被引:1
作者
Yousefi, Ahmad [1 ]
Caticha, Ariel [1 ]
机构
[1] Univ Albany, Dept Phys, Albany, NY 12222 USA
关键词
density functional theory; Hohenberg-Kohn theorem; entropic inference; method of maximum entropy; inhomogeneous fluids; INFORMATION-THEORY; PRINCIPLE;
D O I
10.3390/e26010010
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A formulation of density functional theory (DFT) is constructed as an application of the method of maximum entropy for an inhomogeneous fluid in thermal equilibrium. The use of entropy as a systematic method to generate optimal approximations is extended from the classical to the quantum domain. This process introduces a family of trial density operators that are parameterized by the particle density. The optimal density operator is that which maximizes the quantum entropy relative to the exact canonical density operator. This approach reproduces the variational principle of DFT and allows a simple proof of the Hohenberg-Kohn theorem at finite temperature. Finally, as an illustration, we discuss the Kohn-Sham approximation scheme at finite temperature.
引用
收藏
页数:12
相关论文
共 43 条
[1]   Information theoretic approach provides a reliable description for kinetic component of correlation energy density functional [J].
Alipour, Mojtaba ;
Badooei, Zeinab .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2018, 118 (23)
[2]   Density functional theory: An introduction [J].
Argaman, N ;
Makov, G .
AMERICAN JOURNAL OF PHYSICS, 2000, 68 (01) :69-79
[3]   Hamiltonian structure of thermodynamics with gauge [J].
Balian, R ;
Valentin, P .
EUROPEAN PHYSICAL JOURNAL B, 2001, 21 (02) :269-282
[4]   THE NEGENTROPY PRINCIPLE OF INFORMATION [J].
BRILLOUIN, L .
JOURNAL OF APPLIED PHYSICS, 1953, 24 (09) :1152-1163
[5]  
Brillouin L., 1952, Science and Information Theory
[6]   Exact conditions on the temperature dependence of density functionals [J].
Burke, K. ;
Smith, J. C. ;
Grabowski, P. E. ;
Pribram-Jones, A. .
PHYSICAL REVIEW B, 2016, 93 (19)
[7]  
Caticha A., 2007, arXiv
[8]  
Caticha A., ENTROPIC PHYS PROBAB
[9]  
Caticha A.:., 2021, PHYS SCI FORUM, V3, P12, DOI [10.3390/psf2021003012, DOI 10.3390/PSF2021003012]
[10]  
Caticha A, 2006, Arxiv, DOI arXiv:physics/0608185