Wave-breaking and persistence properties in weighted LP spaces for a Camassa-Holm type equation with quadratic and cubic nonlinearities

被引:0
作者
Cheng, Wenguang [1 ,2 ]
Lin, Ji [2 ]
机构
[1] Shaoxing Univ, Dept Math, Shaoxing 312000, Zhejiang, Peoples R China
[2] Zhejiang Normal Univ, Dept Phys, Jinhua 321004, Zhejiang, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2024年 / 205卷 / 01期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Camassa-Holm type equation with quadratic and cubic nonlinearities; Wave-breaking; Persistence properties; Weighted spaces; SHALLOW-WATER EQUATION; BLOW-UP; DIFFEOMORPHISM GROUP; WELL-POSEDNESS; GEODESIC-FLOW; INSTABILITY; STABILITY; EXISTENCE; BREAKDOWN; CRITERIA;
D O I
10.1007/s00605-023-01938-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Cauchy problem of a Camassa-Holm type equation with quadratic and cubic nonlinearities. We establish a new sufficient condition on the initial data that leads to the wave-breaking for this equation. Moreover, we obtain the persistence results of solutions for the equation in weighted L-p spaces.
引用
收藏
页码:103 / 117
页数:15
相关论文
共 33 条