Topological mechanism in the nonlinear power-law relaxation of cell cortex

被引:2
作者
Li, Shao-Heng [1 ]
Xu, Guang-Kui [1 ]
机构
[1] Xi An Jiao Tong Univ, Dept Engn Mech, Lab Multiscale Mech & Med Sci, State Key Lab Strength & Vibrat Mech Struct,Sch Ae, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
ACTIN-FILAMENT; CREEP FUNCTION; CROSS-LINKING; RHEOLOGY; MODEL;
D O I
10.1103/PhysRevE.108.064408
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Different types of cells exhibit a universal power-law rheology, but the mechanism underneath is still unclear. Based on the exponential distribution of actin filament length, we treat the cell cortex as a collection of chains of crosslinkers with exponentially distributed binding energy, and show that the power-law exponent of its stress relaxation should scale with the chain length. Through this model, we are able to explain how the exponent can be regulated by the crosslinker number and imposed strain during cortex relaxation. Network statistics show that the average length of filament-crosslinker chains decreases with the crosslinker number, which endows a denser network with lower exponent. Due to gradual molecular alignment with the stretch direction, the number of effectively stretched crosslinkers in the network is found to increase with the imposed strain. This effective growth in network density diminishes the exponent under large strain. By incorporating the inclined angle of crosslinkers into the model without in-series structure, we show that the exponent cannot be altered by crosslinker rotation directly, refining our previous conjectures. This work may help to understand cellular mechanics from the molecular perspective.
引用
收藏
页数:8
相关论文
共 42 条
[1]   Strain-accelerated dynamics of soft colloidal glasses [J].
Agarwal, Praveen ;
Archer, Lynden A. .
PHYSICAL REVIEW E, 2011, 83 (04)
[2]  
Alberts B, 2017, Garland Science, DOI DOI 10.1201/9781315735368
[3]   Power laws in microrheology experiments on living cells:: Comparative analysis and modeling [J].
Balland, Martial ;
Desprat, Nicolas ;
Icard, Delphine ;
Fereol, Sophie ;
Asnacios, Atef ;
Browaeys, Julien ;
Henon, Sylvie ;
Gallet, Francois .
PHYSICAL REVIEW E, 2006, 74 (02)
[4]  
BELL GI, 1978, SCIENCE, V200, P618, DOI 10.1126/science.347575
[5]  
Bonakdar N, 2016, NAT MATER, V15, P1090, DOI [10.1038/NMAT4689, 10.1038/nmat4689]
[6]   Effective-medium approach for stiff polymer networks with flexible cross-links [J].
Broedersz, C. P. ;
Storm, C. ;
MacKintosh, F. C. .
PHYSICAL REVIEW E, 2009, 79 (06)
[7]   DISTRIBUTION OF ACTIN FILAMENT LENGTHS MEASURED BY FLUORESCENCE MICROSCOPY [J].
BURLACU, S ;
JANMEY, PA ;
BOREJDO, J .
AMERICAN JOURNAL OF PHYSIOLOGY, 1992, 262 (03) :C569-C577
[8]   Actin cortex architecture regulates cell surface tension [J].
Chugh, Priyamvada ;
Clark, Andrew G. ;
Smith, Matthew B. ;
Cassani, Davide A. D. ;
Dierkes, Kai ;
Ragab, Anan ;
Roux, Philippe P. ;
Charras, Guillaume ;
Salbreux, Guillaume ;
Paluch, Ewa K. .
NATURE CELL BIOLOGY, 2017, 19 (06) :689-+
[9]   Double power-law viscoelastic relaxation of living cells encodes motility trends [J].
de Sousa, J. S. ;
Freire, R. S. ;
Sousa, F. D. ;
Radmacher, M. ;
Silva, A. F. B. ;
Ramos, M. V. ;
Monteiro-Moreira, A. C. O. ;
Mesquita, F. P. ;
Moraes, M. E. A. ;
Montenegro, R. C. ;
Oliveira, C. L. N. .
SCIENTIFIC REPORTS, 2020, 10 (01)
[10]   Creep function of a single living cell [J].
Desprat, N ;
Richert, A ;
Simeon, J ;
Asnacios, A .
BIOPHYSICAL JOURNAL, 2005, 88 (03) :2224-2233