High-Voltage Potassium Hexacyanoferrate Cathode via High-Entropy and Potassium Incorporation for Stable Sodium-Ion Batteries

被引:59
作者
Dai, Junyi [1 ]
Tan, Sha [2 ]
Wang, Lifeng [1 ]
Ling, Fangxin [1 ]
Duan, Fuqiang [3 ]
Ma, Mingze [1 ]
Shao, Yu [4 ]
Rui, Xianhong [5 ]
Yao, Yu [1 ]
Hu, Enyuan [2 ]
Wu, Xiaojun [1 ]
Li, Chunyang [1 ]
Yu, Yan [1 ,6 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Res Ctr Phys Sci Microscale, Dept Mat Sci & Engn, CAS Key Lab Mat Energy Convers, Hefei 230026, Anhui, Peoples R China
[2] Brookhaven Natl Lab, Chem Div, Upton, NY 11973 USA
[3] Natl Univ Def Technol, Coll Aerosp Sci & Engn, Changsha 410073, Hunan, Peoples R China
[4] Jiujiang DeFu Technol Co LTD, Jiujiang 332000, Jiangxi, Peoples R China
[5] Guangdong Univ Technol, Sch Mat & Energy, Guangzhou 510006, Peoples R China
[6] Natl Synchrotron Radiat Lab, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
high entropy; high working voltage; potassiumhexacyanoferrate; cathode; sodium ion batteries; PRUSSIAN BLUE ANALOGS; SUPERIOR CATHODE; OXIDE; REDOX;
D O I
10.1021/acsnano.3c02323
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Prussian blue analogues (PBAs) used as sodium ion battery (SIB) cathodes are usually the focus of attention due to their three-dimensional open frame and high theoretical capacity. Nonetheless, the disadvantages of a low working voltage and inferior structural stability of PBAs prevent their further applications. Herein, we propose constructing the K-x(MnFeCoNiCu)[Fe(CN)(6)] (HE-K-PBA) cathode by high-entropy and potassium incorporation strategy to simultaneously realize high working voltage and cycling stability. The reaction mechanism of metal cations in HE-K-PBA are revealed by synchrotron radiation X-ray absorption spectroscopy (XAS), ex situ X-ray photoelectron spectroscopy (XPS), and in situ Raman spectra. We also investigate the entropy stabilization mechanism via finite element simulation, demonstrating that HE-K-PBA with small von Mises stress and weak structure strain can significantly mitigate the structural distortion. Benefit from the stable structure and everlasting K+ (de)intercalation, the HE-K-PBA delivers high output voltage (3.46 V), good reversible capacity (120.5 mAh g(-1) at 0.01 A g(-1)), and capacity retention of 90.4% after 1700 cycles at 1.0 A g(-1). Moreover, the assembled full cell and all-solid-state batteries with a stable median voltage of 3.29 V over 3000 cycles further demonstrate the application prospects of the HE-K-PBA cathode.
引用
收藏
页码:20949 / 20961
页数:13
相关论文
共 65 条
[21]   Topotactic Epitaxy Self-Assembly of Potassium Manganese Hexacyanoferrate Superstructures for Highly Reversible Sodium-Ion Batteries [J].
Li, Xiaoxia ;
Shang, Yang ;
Yan, Dong ;
Guo, Lu ;
Huang, Shaozhuan ;
Yang, Hui Ying .
ACS NANO, 2022, 16 (01) :453-461
[22]   Stabilizing Transition Metal Vacancy Induced Oxygen Redox by Co2+/Co3+ Redox and Sodium-Site Doping for Layered Cathode Materials [J].
Li, Xun-Lu ;
Bao, Jian ;
Shadike, Zulipiya ;
Wang, Qin-Chao ;
Yang, Xiao-Qing ;
Zhou, Yong-Ning ;
Sun, Dalin ;
Fang, Fang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (40) :22026-22034
[23]   Whole-Voltage-Range Oxygen Redox in P2-Layered Cathode Materials for Sodium-Ion Batteries [J].
Li, Xun-Lu ;
Wang, Tian ;
Yuan, Yifei ;
Yue, Xin-Yang ;
Wang, Qin-Chao ;
Wang, Jun-Yang ;
Zhong, Jun ;
Lin, Ruo-Qian ;
Yao, Yuan ;
Wu, Xiao-Jing ;
Yu, Xi-Qian ;
Fu, Zheng-Wen ;
Xia, Yong-Yao ;
Yang, Xiao-Qing ;
Liu, Tongchao ;
Amine, Khalil ;
Shadike, Zulipiya ;
Zhou, Yong-Ning ;
Lu, Jun .
ADVANCED MATERIALS, 2021, 33 (13)
[24]   Prussian blue analogs cathodes for aqueous zinc ion batteries [J].
Li, Yuanxia ;
Zhao, Jingxin ;
Hu, Qiang ;
Hao, Tianwei ;
Cao, Heng ;
Huang, Xiaomin ;
Liu, Yu ;
Zhang, Yanyan ;
Lin, Dunmin ;
Tang, Yuxin ;
Cai, Yongqing .
MATERIALS TODAY ENERGY, 2022, 29
[25]   Sodium-ion conducting polymer electrolytes [J].
Li, Zhi-Yong ;
Li, Zhuo ;
Fu, Jia-Long ;
Guo, Xin .
RARE METALS, 2023, 42 (01) :1-16
[26]   Sodium transition metal oxides: the preferred cathode choice for future sodium-ion batteries? [J].
Liu, Qiannan ;
Hu, Zhe ;
Li, Weijie ;
Zou, Chao ;
Jin, Huile ;
Wang, Shun ;
Chou, Shulei ;
Dou, Shi-Xue .
ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (01) :158-179
[27]   A Heterostructure Coupling of Bioinspired, Adhesive Polydopamine, and Porous Prussian Blue Nanocubics as Cathode for High-Performance Sodium-Ion Battery [J].
Liu, Yang ;
He, Dandan ;
Cheng, Yingjie ;
Li, Lin ;
Lu, Zhansheng ;
Liang, Rui ;
Fan, Yangyang ;
Qiao, Yun ;
Chou, Shulei .
SMALL, 2020, 16 (11)
[28]   Resolving the Role of Configurational Entropy in Improving Cycling Performance of Multicomponent Hexacyanoferrate Cathodes for Sodium-Ion Batteries [J].
Ma, Yanjiao ;
Hu, Yang ;
Pramudya, Yohanes ;
Diemant, Thomas ;
Wang, Qingsong ;
Goonetilleke, Damian ;
Tang, Yushu ;
Zhou, Bei ;
Hahn, Horst ;
Wenzel, Wolfgang ;
Fichtner, Maximilian ;
Ma, Yuan ;
Breitung, Ben ;
Brezesinski, Torsten .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (34)
[29]   High-Entropy Metal-Organic Frameworks for Highly Reversible Sodium Storage [J].
Ma, Yanjiao ;
Ma, Yuan ;
Dreyer, Soeren Lukas ;
Wang, Qingsong ;
Wang, Kai ;
Goonetilleke, Damian ;
Omar, Ahmad ;
Mikhailova, Daria ;
Hahn, Horst ;
Breitung, Ben ;
Brezesinski, Torsten .
ADVANCED MATERIALS, 2021, 33 (34)
[30]   Conversion/alloying lithium-ion anodes - enhancing the energy density by transition metal doping [J].
Ma, Yanjiao ;
Ma, Yuan ;
Giuli, Gabriele ;
Diemant, Thomas ;
Behm, R. Juergen ;
Geiger, Dorin ;
Kaiser, Ute ;
Ulissi, Ulderico ;
Passerini, Stefano ;
Bresser, Dominic .
SUSTAINABLE ENERGY & FUELS, 2018, 2 (12) :2601-2608