GiftBTE: an efficient deterministic solver for non-gray phonon Boltzmann transport equation

被引:14
作者
Hu, Yue [1 ,2 ]
Jia, Ru [1 ,2 ]
Xu, Jiaxuan [1 ,2 ]
Sheng, Yufei [1 ,2 ]
Wen, Minhua [3 ]
Lin, James [3 ]
Shen, Yongxing [2 ]
Bao, Hua [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Global Inst Future Technol, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Univ Michigan Shanghai Jiao Tong Univ Joint Inst, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, Ctr High Performance Comp, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
phonon Boltzmann transport equation; submicron thermal transport; discrete ordinates method; open-source package; GAS KINETIC SCHEME; THERMAL TRANSPORT; HEAT-TRANSFER; MULTISCALE SIMULATION; DISSIPATION; CONDUCTION;
D O I
10.1088/1361-648X/acfdea
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Advances in nanotechnology have facilitated the exploration of submicron thermal transport. At this scale, Fourier's law is no longer applicable, and the governing equation for thermal transport is the phonon Boltzmann transport equation (BTE). However, the availability of open-source solvers for the phonon BTE is limited, impeding progress in this field. This study introduces an open-source package, GiftBTE, for numerically solving the non-gray phonon BTE. GiftBTE employs deterministic solutions and provides both steady-state and transient solvers. For the steady-state solver, GiftBTE employs the implicit discrete ordinates method (DOM) with second-order spatial accuracy and the synthetic iterative scheme. For the transient solver, GiftBTE employs the explicit DOM with second-order spatial accuracy. This package demonstrates excellent computational efficiency, enabling realistic three-dimensional simulations of devices and materials. By interfacing with first-principles calculations, this solver enables parameter-free computation of submicron thermal transport. The application of GiftBTE includes, but is not limited to, computing the thermal conductivity of nanostructures, predicting temperature rises in transistors, and simulating laser heating processes.
引用
收藏
页数:19
相关论文
共 81 条
  • [1] Large-scale parallel computation of the phonon Boltzmann Transport Equation
    Ali, Syed Ashraf
    Kollu, Gautham
    Mazumder, Sandip
    Sadayappan, P.
    Mittal, Arpit
    [J]. INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2014, 86 : 341 - 351
  • [2] Electrothermal Monte Carlo Simulation of GaN HEMTs Including Electron-Electron Interactions
    Ashok, Ashwin
    Vasileska, Dragica
    Hartin, Olin L.
    Goodnick, Stephen M.
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2010, 57 (03) : 562 - 570
  • [3] Bao H., 2018, ES Energy Environ, V1, P16, DOI [10.30919/esee8c149, DOI 10.30919/ESEE8C149]
  • [4] A MODEL FOR COLLISION PROCESSES IN GASES .1. SMALL AMPLITUDE PROCESSES IN CHARGED AND NEUTRAL ONE-COMPONENT SYSTEMS
    BHATNAGAR, PL
    GROSS, EP
    KROOK, M
    [J]. PHYSICAL REVIEW, 1954, 94 (03): : 511 - 525
  • [5] Intrinsic lattice thermal conductivity of semiconductors from first principles
    Broido, D. A.
    Malorny, M.
    Birner, G.
    Mingo, Natalio
    Stewart, D. A.
    [J]. APPLIED PHYSICS LETTERS, 2007, 91 (23)
  • [6] Nanoscale thermal transport
    Cahill, DG
    Ford, WK
    Goodson, KE
    Mahan, GD
    Majumdar, A
    Maris, HJ
    Merlin, R
    Phillpot, SR
    [J]. JOURNAL OF APPLIED PHYSICS, 2003, 93 (02) : 793 - 818
  • [7] almaBTE: A solver of the space-time dependent Boltzmann transport equation for phonons in structured materials
    Carrete, Jesus
    Vermeersch, Bjorn
    Katre, Ankita
    van Roekeghem, Ambroise
    Wang, Tao
    Madsen, Georg K. H.
    Mingo, Natalio
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2017, 220 : 351 - 362
  • [8] Note on the conduction of heat in crystals
    Casimir, HBG
    [J]. PHYSICA, 1938, 5 : 495 - 500
  • [9] Chen G., 2005, PAPPAL SER MECH ENG
  • [10] Non-Fourier phonon heat conduction at the microscale and nanoscale
    Chen, Gang
    [J]. NATURE REVIEWS PHYSICS, 2021, 3 (08) : 555 - 569