Some new restricted maximal operators of Fejér means of Walsh-Fourier series

被引:6
作者
Baramidze, Davit [1 ,2 ]
Baramidze, Lasha [3 ]
Perssson, Lars-Erik [4 ,5 ]
Tephnadze, George [1 ]
机构
[1] Univ Georgia, Sch Sci & Technol, 77a Merab Kostava St, Tbilisi 0128, Georgia
[2] UiT Arctic Univ Norway, Dept Comp Sci & Computat Engn, POB 385, N-8505 Narvik, Norway
[3] Ivane Javakhishvili Tbilisi State Univ, Fac Exact & Nat Sci, Dept Math, Chavchavadze Str 1, Tbilisi 0128, Georgia
[4] UiT Arctic Univ Norway, POB 385, N-8505 Narvik, Norway
[5] Karlstad Univ, Dept Math & Comp Sci, S-65188 Karlstad, Sweden
关键词
Walsh system; Fejer means; Martingale Hardy space; Maximal operators; Restricted maximal operators; FEJER MEANS; RESPECT; CONVERGENCE; INEQUALITY;
D O I
10.1007/s43037-023-00300-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we derive the maximal subspace of natural numbers {n(k) : k >= 0}, such that the restricted maximal operator, defined by sup(k is an element of N) vertical bar sigma F-nk vertical bar on this subspace of Fejer means of Walsh-Fourier series is bounded from the martingale Hardy space H-1/2 to the Lebesgue space L-1/2. The sharpness of this result is also proved.
引用
收藏
页数:20
相关论文
共 22 条
[2]   INVESTIGATIONS OF CERTAIN OPERATORS WITH RESPECT TO THE VILENKIN SYSTEM [J].
GAT, G .
ACTA MATHEMATICA HUNGARICA, 1993, 61 (1-2) :131-149
[3]   Maximal operators of Fejer means of double Walsh-Fourier series [J].
Goginava, U. .
ACTA MATHEMATICA HUNGARICA, 2007, 115 (04) :333-340
[4]   The Martingale Hardy Type Inequality for Marcinkiewicz-Fejer Means of Two-dimensional Conjugate Walsh-Fourier Series [J].
Goginava, Ushangi .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (10) :1949-1958
[5]  
Goginava U, 2008, ACTA SCI MATH, V74, P615
[6]  
Golubov B. I., 1991, Walsh Series and Transforms. Theory and Applications, DOI DOI 10.1007/978-94-011-3288-6
[7]   GENERALIZATION OF CONCEPT OF DERIVATIVE [J].
PAL, J ;
SIMON, P .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1977, 29 (1-2) :155-164
[8]   A Sharp Boundedness Result Concerning Some Maximal Operators of Vilenkin-Fej,r Means [J].
Persson, L. -E. ;
Tephnadze, G. .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (04) :1841-1853
[9]  
Schipp F., 1990, Walsh series. An introduction to dyadic harmonic analysis
[10]  
Schipp F., 1975, Mat. Zametki, V18, P193