LaserMix for Semi-Supervised LiDAR Semantic Segmentation

被引:42
|
作者
Kong, Lingdong [1 ,2 ,3 ]
Ren, Jiawei [1 ]
Pan, Liang [1 ]
Liu, Ziwei [1 ]
机构
[1] Nanyang Technol Univ, S Lab, Singapore, Singapore
[2] Natl Univ Singapore, Singapore, Singapore
[3] CNRS CREATE, Singapore, Singapore
来源
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2023年
基金
新加坡国家研究基金会;
关键词
D O I
10.1109/CVPR52729.2023.02079
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Densely annotating LiDAR point clouds is costly, which often restrains the scalability of fully-supervised learning methods. In this work, we study the underexplored semisupervised learning (SSL) in LiDAR semantic segmentation. Our core idea is to leverage the strong spatial cues of LiDAR point clouds to better exploit unlabeled data. We propose LaserMix to mix laser beams from different LiDAR scans and then encourage the model to make consistent and confident predictions before and after mixing. Our framework has three appealing properties. 1) Generic: LaserMix is agnostic to LiDAR representations (e.g., range view and voxel), and hence our SSL framework can be universally applied. 2) Statistically grounded: We provide a detailed analysis to theoretically explain the applicability of the proposed framework. 3) Effective: Comprehensive experimental analysis on popular LiDAR segmentation datasets (nuScenes, SemanticKITTI, and ScribbleKITTI) demonstrates our effectiveness and superiority. Notably, we achieve competitive results over fully-supervised counterparts with 2x to 5x fewer labels and improve the supervised-only baseline significantly by relatively 10.8%. We hope this concise yet high-performing framework could facilitate future research in semi-supervised LiDAR segmentation. Code is publicly available(1).
引用
收藏
页码:21705 / 21715
页数:11
相关论文
共 50 条
  • [1] Lidar-Camera Semi-Supervised Learning for Semantic Segmentation
    Caltagirone, Luca
    Bellone, Mauro
    Svensson, Lennart
    Wahde, Mattias
    Sell, Raivo
    SENSORS, 2021, 21 (14)
  • [2] ItTakesTwo: Leveraging Peer Representations for Semi-supervised LiDAR Semantic Segmentation
    Liu, Yuyuan
    Chen, Yuanhong
    Wang, Hu
    Belagiannis, Vasileios
    Reid, Ian
    Carneiro, Gustavo
    COMPUTER VISION-ECCV 2024, PT I, 2025, 15059 : 81 - 99
  • [3] Transferable Semi-Supervised Semantic Segmentation
    Xiao, Huaxin
    Wei, Yunchao
    Liu, Yu
    Zhang, Maojun
    Feng, Jiashi
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 7420 - 7427
  • [4] Universal Semi-Supervised Semantic Segmentation
    Kalluri, Tarun
    Varma, Girish
    Chandraker, Manmohan
    Jawahar, C. V.
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 5258 - 5269
  • [5] Semantic Segmentation with Active Semi-Supervised Learning
    Rangnekar, Aneesh
    Kanan, Christopher
    Hoffman, Matthew
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 5955 - 5966
  • [6] Semi-Supervised Semantic Segmentation With Region Relevance
    Chen, Rui
    Chen, Tao
    Wang, Qiong
    Yao, Yazhou
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 852 - 857
  • [7] A semi-supervised approach for the semantic segmentation of trajectories
    Soares Junior, Amilcar
    Times, Valeria Cesario
    Renso, Chiara
    Matwin, Stan
    Cabral, Lucidio A. F.
    2018 19TH IEEE INTERNATIONAL CONFERENCE ON MOBILE DATA MANAGEMENT (MDM 2018), 2018, : 145 - 154
  • [8] Revisiting Consistency for Semi-Supervised Semantic Segmentation
    Grubisic, Ivan
    Orsic, Marin
    Segvic, Sinisa
    SENSORS, 2023, 23 (02)
  • [9] Information Transfer in Semi-Supervised Semantic Segmentation
    Wu, Jiawei
    Fan, Haoyi
    Li, Zuoyong
    Liu, Guang-Hai
    Lin, Shouying
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (02) : 1174 - 1185
  • [10] Learning from Spatio-temporal Correlation for Semi-Supervised LiDAR Semantic Segmentation
    Lee, Seungho
    Lee, Hwijeong
    Shim, Hyunjung
    arXiv,