Nonlinear nanomechanical resonators approaching the quantum ground state

被引:30
作者
Samanta, C. [1 ]
De Bonis, S. L. [1 ]
Moller, C. B. [1 ]
Tormo-Queralt, R. [1 ]
Yang, W. [1 ]
Urgell, C. [1 ]
Stamenic, B. [2 ]
Thibeault, B. [2 ]
Jin, Y. [3 ]
Czaplewski, D. A. [4 ]
Pistolesi, F. [5 ]
Bachtold, A. [1 ]
机构
[1] ICFO Inst Ciencies Foton, Barcelona Inst Sci & Technol, Castelldefels, Spain
[2] Univ Calif Santa Barbara, ECE Dept, UCSB Nanofabricat Facil, Santa Barbara, CA USA
[3] Univ Paris Saclay, CNRS, C2N, Palaiseau, France
[4] Ctr Nanoscale Mat, Argonne Natl Lab, Argonne, IL USA
[5] Univ Bordeaux, CNRS, LOMA, UMR 5798, Talence, France
关键词
TRANSPORT; MECHANICS; MOTION;
D O I
10.1038/s41567-023-02065-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is an open question whether mechanical resonators can be made nonlinear with vibrations approaching the quantum ground state. This requires the engineering of a mechanical nonlinearity far beyond what has been realized so far. Here we discover a mechanism to boost the Duffing nonlinearity by coupling the vibrations of a nanotube resonator to single-electron tunnelling and by operating the system in the ultrastrong-coupling regime. We find that thermal vibrations become highly nonlinear when lowering the temperature. The average vibration amplitude at the lowest temperature is 13 times the zero-point motion, with approximately 42% of the thermal energy stored in the anharmonic part of the potential. Our work may enable the realization of mechanical Schrodinger cat states, mechanical qubits and quantum simulators emulating the electron-phonon coupling. Although mechanical resonators are routinely cooled to their quantum ground state, it has remained unclear if sizable nonlinearities could persist there. Experiments in the ultrastrong-coupling regime now show that this is possible.
引用
收藏
页码:1340 / +
页数:10
相关论文
共 43 条
[1]   Resolving the energy levels of a nanomechanical oscillator [J].
Arrangoiz-Arriola, Patricio ;
Wollack, E. Alex ;
Wang, Zhaoyou ;
Pechal, Marek ;
Jiang, Wentao ;
McKenna, Timothy P. ;
Witmer, Jeremy D. ;
Van Laer, Raphael ;
Safavi-Naeini, Amir H. .
NATURE, 2019, 571 (7766) :537-+
[2]   Mesoscopic physics of nanomechanical systems [J].
Bachtold, Adrian ;
Moser, Joel ;
Dykman, M. I. .
REVIEWS OF MODERN PHYSICS, 2022, 94 (04)
[3]   Phonon-Induced Pairing in Quantum Dot Quantum Simulator [J].
Bhattacharya, Utso ;
Grass, Tobias ;
Bachtold, Adrian ;
Lewenstein, Maciej ;
Pistolesi, Fabio .
NANO LETTERS, 2021, 21 (22) :9661-9667
[4]   Quantum capacitance mediated carbon nanotube optomechanics [J].
Blien, Stefan ;
Steger, Patrick ;
Huttnen, Niklas ;
Graaf, Richard ;
Huttel, Andreas K. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[5]   Creation and control of multi-phonon Fock states in a bulk acoustic-wave resonator [J].
Chu, Yiwen ;
Kharel, Prashanta ;
Yoon, Taekwan ;
Frunzio, Luigi ;
Rakich, Peter T. ;
Schoelkopf, Robert J. .
NATURE, 2018, 563 (7733) :666-670
[6]   Ultrasensitive Displacement Noise Measurement of Carbon Nanotube Mechanical Resonators [J].
de Bonis, S. L. ;
Urgell, C. ;
Yang, W. ;
Samanta, C. ;
Noury, A. ;
Vergara-Cruz, J. ;
Dong, Q. ;
Jin, Y. ;
Bachtold, A. .
NANO LETTERS, 2018, 18 (08) :5324-5328
[7]   Mechanically probing coherent tunneling in a double quantum dot [J].
Gardner, J. ;
Bennett, S. D. ;
Clerk, A. A. .
PHYSICAL REVIEW B, 2011, 84 (20)
[8]  
Gieseler J, 2013, NAT PHYS, V9, P806, DOI [10.1038/NPHYS2798, 10.1038/nphys2798]
[9]  
Gloppe A, 2014, NAT NANOTECHNOL, V9, P920, DOI [10.1038/NNANO.2014.189, 10.1038/nnano.2014.189]
[10]   Frequency stabilization and noise-induced spectral narrowing in resonators with zero dispersion [J].
Huang, L. ;
Soskin, S. M. ;
Khovanov, I. A. ;
Mannella, R. ;
Ninios, K. ;
Chan, H. B. .
NATURE COMMUNICATIONS, 2019, 10 (1)