Image Denoising Using Convolutional Sparse Coding Network with Dry Friction

被引:0
作者
Zhang, Yali [1 ]
Wang, Xiaofan [1 ]
Wang, Fengpin [1 ]
Wang, Jinjia [1 ,2 ]
机构
[1] Yanshan Univ, Sch Informat Sci & Engn, Qinhuangdao 066004, Peoples R China
[2] Yanshan Univ, Hebei Key Lab Informat Transmiss & Signal Proc, Qinhuangdao 066004, Peoples R China
来源
COMPUTER VISION - ACCV 2022, PT I | 2023年 / 13841卷
关键词
Image denoising; Convolutional sparse coding; Iterative shrinkage thresholding algorithms; Dry friction; ALGORITHMS;
D O I
10.1007/978-3-031-26319-4_35
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Convolutional sparse coding model has been successfully used in some tasks such as signal or image processing and classification. The recently proposed supervised convolutional sparse coding network (CSCNet) model based on the Minimum Mean Square Error (MMSE) approximation shows the similar PSNR value for image denoising problem with state of the art methods while using much fewer parameters. The CSCNet uses the learning convolutional iterative shrinkage-thresholding algorithms (LISTA) based on the convolutional dictionary setting. However, LISTA methods are known to converge to local minima. In this paper we proposed one novel algorithm based on LISTA with dry friction, named LISTDFA. The dry friction enters the LISTDFA algorithm through proximal mapping. Due to the nature of dry friction, the LISTDFA algorithm is proven to converge in a finite time. The corresponding iterative neural network preserves the computational simplicity of the original CSCNet, and can reach a better local minima practically.
引用
收藏
页码:587 / 601
页数:15
相关论文
共 37 条
  • [1] First-order inertial algorithms involving dry friction damping
    Adly, Samir
    Attouch, Hedy
    [J]. MATHEMATICAL PROGRAMMING, 2022, 193 (01) : 405 - 445
  • [2] K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
    Aharon, Michal
    Elad, Michael
    Bruckstein, Alfred
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) : 4311 - 4322
  • [3] Bardes A., 2022, INT C LEARNING REPRE
  • [4] Chalasani Rakesh, 2013, 2013 INT JOINT C NEU, P1, DOI [10.1109/IJCNN.2013.6706854, DOI 10.1109/IJCNN.2013.6706854]
  • [5] ORTHOGONAL LEAST-SQUARES METHODS AND THEIR APPLICATION TO NON-LINEAR SYSTEM-IDENTIFICATION
    CHEN, S
    BILLINGS, SA
    LUO, W
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1989, 50 (05) : 1873 - 1896
  • [6] Atomic decomposition by basis pursuit
    Chen, SSB
    Donoho, DL
    Saunders, MA
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (01) : 33 - 61
  • [7] Momentum-Net: Fast and Convergent Iterative Neural Network for Inverse Problems
    Chun, Il Yong
    Huang, Zhengyu
    Lim, Hongki
    Fessler, Jeffrey A.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (04) : 4915 - 4931
  • [8] Image denoising by sparse 3-D transform-domain collaborative filtering
    Dabov, Kostadin
    Foi, Alessandro
    Katkovnik, Vladimir
    Egiazarian, Karen
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (08) : 2080 - 2095
  • [9] Deep Coupled ISTA Network for Multi-Modal Image Super-Resolution
    Deng, Xin
    Dragotti, Pier Luigi
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 (29) : 1683 - 1698
  • [10] Compression Artifacts Reduction by a Deep Convolutional Network
    Dong, Chao
    Deng, Yubin
    Loy, Chen Change
    Tang, Xiaoou
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 576 - 584