BViT: Broad Attention-Based Vision Transformer

被引:20
作者
Li, Nannan [1 ]
Chen, Yaran [1 ]
Li, Weifan [1 ]
Ding, Zixiang [1 ]
Zhao, Dongbin [1 ]
Nie, Shuai [2 ]
机构
[1] Chinese Acad Sci, Inst Automat, State Key Lab Multimodal Artificial Intelligence S, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Transformers; Feature extraction; Task analysis; Convolutional neural networks; Image classification; Data mining; Computer architecture; Broad attention; broad connection; image classification; parameter-free attention; vision transformer (ViT);
D O I
10.1109/TNNLS.2023.3264730
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent works have demonstrated that transformer can achieve promising performance in computer vision, by exploiting the relationship among image patches with self-attention. They only consider the attention in a single feature layer, but ignore the complementarity of attention in different layers. In this article, we propose broad attention to improve the performance by incorporating the attention relationship of different layers for vision transformer (ViT), which is called BViT. The broad attention is implemented by broad connection and parameter-free attention. Broad connection of each transformer layer promotes the transmission and integration of information for BViT. Without introducing additional trainable parameters, parameter-free attention jointly focuses on the already available attention information in different layers for extracting useful information and building their relationship. Experiments on image classification tasks demonstrate that BViT delivers superior accuracy of 75.0%/81.6% top-1 accuracy on ImageNet with 5M/22M parameters. Moreover, we transfer BViT to downstream object recognition benchmarks to achieve 98.9% and 89.9% on CIFAR10 and CIFAR100, respectively, that exceed ViT with fewer parameters. For the generalization test, the broad attention in Swin Transformer, T2T-ViT and LVT also brings an improvement of more than 1%. To sum up, broad attention is promising to promote the performance of attention-based models.
引用
收藏
页码:12772 / 12783
页数:12
相关论文
共 64 条
[1]  
Abnar S, 2020, 58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), P4190
[2]  
Ba J. L., 2016, ARXIV
[3]  
Bahdanau D, 2016, Arxiv, DOI [arXiv:1409.0473, 10.48550/arXiv.1409.0473, DOI 10.48550/ARXIV.1409.0473]
[4]   GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond [J].
Cao, Yue ;
Xu, Jiarui ;
Lin, Stephen ;
Wei, Fangyun ;
Hu, Han .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, :1971-1980
[5]   End-to-End Object Detection with Transformers [J].
Carion, Nicolas ;
Massa, Francisco ;
Synnaeve, Gabriel ;
Usunier, Nicolas ;
Kirillov, Alexander ;
Zagoruyko, Sergey .
COMPUTER VISION - ECCV 2020, PT I, 2020, 12346 :213-229
[6]   AutoFormer: Searching Transformers for Visual Recognition [J].
Chen, Minghao ;
Peng, Houwen ;
Fu, Jianlong ;
Ling, Haibin .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :12250-12260
[7]   ModuleNet: Knowledge-Inherited Neural Architecture Search [J].
Chen, Yaran ;
Gao, Ruiyuan ;
Liu, Fenggang ;
Zhao, Dongbin .
IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (11) :11661-11671
[8]   Randaugment: Practical automated data augmentation with a reduced search space [J].
Cubuk, Ekin D. ;
Zoph, Barret ;
Shlens, Jonathon ;
Le, Quoc, V .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, :3008-3017
[9]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[10]  
Ding Zefeng, 2021, arXiv