A convolutional architecture for 3D model embedding using image views

被引:1
|
作者
Labrada, Arniel [1 ]
Bustos, Benjamin [1 ]
Sipiran, Ivan [1 ]
机构
[1] Univ Chile, Dept Comp Sci, Santiago, Chile
来源
VISUAL COMPUTER | 2024年 / 40卷 / 03期
关键词
3D model; Deep learning; Convolutional neural network; Embedding; CLASSIFICATION;
D O I
10.1007/s00371-023-02872-4
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
During the last years, many advances have been made in tasks like 3D model retrieval, 3D model classification, and 3D model segmentation. The typical 3D representations such as point clouds, voxels, and polygon meshes are mostly suitable for rendering purposes, while their use for cognitive processes (retrieval, classification, segmentation) is limited due to their high redundancy and complexity. We propose a deep learning architecture to handle 3D models represented as sets of image views as input. Our proposed architecture combines other standard architectures, like Convolutional Neural Networks and autoencoders, for computing 3D model embeddings using sets of image views extracted from the 3D models, avoiding the common view pooling layer approach used in these cases. Our goal is to represent a 3D model as a vector with enough information so it can substitute the 3D model for high-level tasks. Since this vector is a learned representation which tries to capture the relevant information of a 3D model, we show that the embedding representation conveys semantic information that helps to deal with the similarity assessment of 3D objects. We compare our proposed embedding technique with state-of-the-art techniques for 3D Model Retrieval using the ShapeNet and ModelNet datasets. We show that the embeddings obtained with our proposed architecture allow us to obtain a high effectiveness score in both normalized and perturbed versions of the ShapeNet dataset while improving the training and inference times compared to the standard state-of-the-art techniques.
引用
收藏
页码:1601 / 1615
页数:15
相关论文
共 50 条
  • [31] Hyperspectral Image Spatial Super-Resolution via 3D Full Convolutional Neural Network
    Mei, Shaohui
    Yuan, Xin
    Ji, Jingyu
    Zhang, Yifan
    Wan, Shuai
    Du, Qian
    REMOTE SENSING, 2017, 9 (11)
  • [32] TREE SPECIES IDENTIFICATION USING 3D SPECTRAL DATA AND 3D CONVOLUTIONAL NEURAL NETWORK
    Polonen, Ilkka
    Annala, Leevi
    Rahkonen, Samuli
    Nevalainen, Olli
    Honkavaara, Eija
    Tuominen, Sakari
    Viljanen, Niko
    Hakala, Teemu
    2018 9TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2018,
  • [33] Convolutional Neural Networks and 3D Gabor Filtering for Hyperspectral Image Classification
    Wei X.
    Yu X.
    Tan X.
    Liu B.
    Zhi L.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2020, 32 (01): : 90 - 98
  • [34] Division and Fusion: Rethink Convolutional Kernels for 3D Medical Image Segmentation
    Fang, Xi
    Sanford, Thomas
    Turkbey, Baris
    Xu, Sheng
    Wood, Bradford J.
    Yan, Pingkun
    MACHINE LEARNING IN MEDICAL IMAGING, MLMI 2020, 2020, 12436 : 160 - 169
  • [35] An application of cascaded 3D fully convolutional networks for medical image segmentation
    Roth, Holger R.
    Oda, Hirohisa
    Zhou, Xiangrong
    Shimizu, Natsuki
    Yang, Ying
    Hayashi, Yuichiro
    Oda, Masahiro
    Fujiwara, Michitaka
    Misawa, Kazunari
    Mori, Kensaku
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2018, 66 : 90 - 99
  • [36] Machine learning for scene 3D reconstruction using a single image
    Knyaz, Vladimir
    OPTICS, PHOTONICS AND DIGITAL TECHNOLOGIES FOR IMAGING APPLICATIONS VI, 2021, 11353
  • [37] Detection and classification of faults in photovoltaic arrays using a 3D convolutional neural network
    Hong, Ying-Yi
    Pula, Rolando A.
    ENERGY, 2022, 246
  • [38] Autoencoder-convolutional neural network-based embedding and extraction model for image watermarking
    Mahapatra, Debolina
    Amrit, Preetam
    Singh, Om Prakash
    Singh, Amit Kumar
    Agrawal, Amrit Kumar
    JOURNAL OF ELECTRONIC IMAGING, 2023, 32 (02)
  • [39] Recognition of Holoscopic 3D Video Hand Gesture Using Convolutional Neural Networks
    Alnaim, Norah
    Abbod, Maysam
    Swash, Rafiq
    TECHNOLOGIES, 2020, 8 (02)
  • [40] Synergistic 2D/3D Convolutional Neural Network for Hyperspectral Image Classification
    Yang, Xiaofei
    Zhang, Xiaofeng
    Ye, Yunming
    K Lau, Raymond Y.
    Lu, Shijian
    Li, Xutao
    Huang, Xiaohui
    REMOTE SENSING, 2020, 12 (12)