Nanostructured 3D-Printed Hybrid Scaffold Accelerates Bone Regeneration by Photointegrating Nanohydroxyapatite

被引:36
作者
Tong, Lei [1 ]
Pu, Xiaocong [1 ,2 ]
Liu, Quanying [1 ]
Li, Xing [1 ]
Chen, Manyu [1 ]
Wang, Peilei [1 ]
Zou, Yaping [1 ]
Lu, Gonggong [3 ]
Liang, Jie [1 ,4 ]
Fan, Yujiang [1 ]
Zhang, Xingdong [1 ]
Sun, Yong [1 ]
机构
[1] Sichuan Univ, Natl Engn Res Ctr Biomat, 29 Wangjiang Rd, Chengdu 610064, Peoples R China
[2] Sichuan Inst Drug Control, Sichuan Testing Ctr Med Devices, NMPA Key Lab Tech Res Drug Prod In Vitro & In Vivo, 8 Xinwen Rd, Chengdu 611731, Peoples R China
[3] Sichuan Univ, West China Hosp, Dept Neurosurg, 37 Guoxue Lane, Chengdu 610041, Peoples R China
[4] Sichuan Univ, Sichuan Testing Ctr Biomat & Med Devices, 29 Wangjiang Rd, Chengdu 610064, Peoples R China
基金
中国国家自然科学基金;
关键词
3D printing; bone regeneration; hydrogels; nanohydroxyapatite; photoinitiation; SURFACE MODIFICATION; HYDROXYAPATITE; CELLS;
D O I
10.1002/advs.202300038
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanostructured biomaterials that replicate natural bone architecture are expected to facilitate bone regeneration. Here, nanohydroxyapatite (nHAp) with vinyl surface modification is acquired by silicon-based coupling agent and photointegrated with methacrylic anhydride-modified gelatin to manufacture a chemically integrated 3D-printed hybrid bone scaffold (75.6 wt% solid content). This nanostructured procedure significantly increases its storage modulus by 19.43-fold (79.2 kPa) to construct a more stable mechanical structure. Furthermore, biofunctional hydrogel with biomimetic extracellular matrix is anchored onto the filament of 3D-printed hybrid scaffold (HGel-g-nHAp) by polyphenol-mediated multiple chemical reactions, which contributes to initiate early osteogenesis and angiogenesis by recruiting endogenous stem cells in situ. Significant ectopic mineral deposition is also observed in subcutaneously implanted nude mice with storage modulus enhancement of 25.3-fold after 30 days. Meanwhile, HGel-g-nHAp realizes substantial bone reconstruction in the rabbit cranial defect model, achieving 61.3% breaking load strength and 73.1% bone volume fractions in comparison to natural cranium 15 weeks after implantation. This optical integration strategy of vinyl modified nHAp provides a prospective structural design for regenerative 3D-printed bone scaffold.
引用
收藏
页数:14
相关论文
共 52 条
[1]   Effects of surface modification on dispersion, mechanical, thermal and dynamic mechanical properties of injection molded PLA-hydroxyapatite composites [J].
Akindoyo, John O. ;
Beg, Mohammad D. H. ;
Ghazali, Suriati ;
Heim, Hans P. ;
Feldmann, Maik .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2017, 103 :96-105
[2]   Preparation and characterization of amine functional nano-hydroxyapatite/chitosan bionanocomposite for bone tissue engineering applications [J].
Atak, Besir Hakan ;
Buyuk, Berna ;
Huysal, Merve ;
Isik, Sevim ;
Senel, Mehmet ;
Metzger, Wolfgang ;
Cetin, Guven .
CARBOHYDRATE POLYMERS, 2017, 164 :200-213
[3]   Tetraethylorthosilicate (TEOS) applied in the surface modification of hydroxyapatite to develop polydimethylsiloxane/hydroxyapatite composites [J].
Bareiro, O. ;
Santos, L. A. .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2014, 115 :400-405
[4]   Silicate-based bioceramic scaffolds for dual-lineage regeneration of osteochondral defect [J].
Bunpetch, Varitsara ;
Zhang, Xiaoan ;
Li, Tian ;
Lin, Junxin ;
Maswikiti, Ewetse Paul ;
Wu, Yan ;
Cai, Dandan ;
Li, Jun ;
Zhang, Shufang ;
Wu, Chengtie ;
Ouyang, Hongwei .
BIOMATERIALS, 2019, 192 (323-333) :323-333
[5]   Acellular Biomaterials: An Evolving Alternative to Cell-Based Therapies [J].
Burdick, Jason A. ;
Mauck, Robert L. ;
Gorman, Joseph H., III ;
Gorman, Robert C. .
SCIENCE TRANSLATIONAL MEDICINE, 2013, 5 (176)
[6]   Controlled Co-delivery of Growth Factors through Layer-by-Layer Assembly of Core-Shell Nanofibers for Improving Bone Regeneration [J].
Cheng, Gu ;
Yin, Chengcheng ;
Tu, Hu ;
Jiang, Shan ;
Wang, Qun ;
Zhou, Xue ;
Xing, Xin ;
Xie, Congyong ;
Shi, Xiaowen ;
Du, Yuming ;
Deng, Hongbing ;
Li, Zubing .
ACS NANO, 2019, 13 (06) :6372-6382
[7]   Scaffold Fabrication Technologies and Structure/Function Properties in Bone Tissue Engineering [J].
Collins, Maurice N. ;
Ren, Guang ;
Young, Kieran ;
Pina, S. ;
Reis, Rui L. ;
Oliveira, J. Miguel .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (21)
[8]   Sulfated polysaccharide-based scaffolds for orthopaedic tissue engineering [J].
Dinoro, Jeremy ;
Maher, Malachy ;
Talebian, Sepehr ;
Jafarkhani, Mahboubeh ;
Mehrali, Mehdi ;
Orive, Gorka ;
Foroughi, Javad ;
Lord, Megan S. ;
Dolatshahi-Pirouz, Alireza .
BIOMATERIALS, 2019, 214
[9]   Osteonal lamellae elementary units: Lamellar microstructure, curvature and mechanical properties [J].
Faingold, Anna ;
Cohen, Sidney R. ;
Reznikov, Natalie ;
Wagner, H. Daniel .
ACTA BIOMATERIALIA, 2013, 9 (04) :5956-5962
[10]   Functionalized 3D-printed silk-hydroxyapatite scaffolds for enhanced bone regeneration with innervation and vascularization [J].
Fitzpatrick, Vincent ;
Martin-Moldes, Zaira ;
Deck, Anna ;
Torres-Sanchez, Ruben ;
Valat, Anne ;
Cairns, Dana ;
Li, Chunmei ;
Kaplan, David L. .
BIOMATERIALS, 2021, 276