Sensitivity enhanced tunable plasmonic biosensor using two-dimensional twisted bilayer graphene superlattice

被引:12
作者
Du, Fusheng [1 ]
Zheng, Kai [3 ]
Zeng, Shuwen [2 ]
Yuan, Yufeng [1 ]
机构
[1] Dongguan Univ Technol, Sch Elect Engn & Intelligentizat, Dongguan 523808, Peoples R China
[2] Univ Technol Troyes, Light Nanomat & Nanotechnol L2n, CNRS ERL 7004, F-10000 Troyes, France
[3] Northwestern Polytech Univ, Sch Civil Aviat, Xian 710072, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
GH shift; human hemoglobin; SARS-CoV-2; sensitivity enhancement; tunable plasmonic biosensor; twisted bilayer graphene superlattice; REFRACTIVE-INDEX; RESONANCE;
D O I
10.1515/nanoph-2022-0798
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This study theoretically demonstrated an insight for designing a novel tunable plasmonic biosensor, which was created by simply stacking a twisted bilayer graphene (TBG) superlattice onto a plasmonic gold thin film. To achieve ultrasensitive biosensing, the plasmonic biosensor was modulated by Goos-Hanchen (GH) shift. Interestingly, our proposed biosensor exhibited tunable biosensing ability, largely depending on the twisted angle. When the relative twisted angle was optimized to be 55.3 degrees, such a configuration: 44 nm Au film/1-TBG superlattice could produce an ultralow reflectivity of 2.2038 x 10(-9) and ultra-large GH shift of 4.4785 x 10(4) mu m. For a small refractive index (RI) increment of 0.0012 RIU (refractive index unit) in sensing interface, the optimal configuration could offer an ultra-high GH shift detection sensitivity of 3.9570 x 10(7) mu m/RIU. More importantly, the optimal plasmonic configuration demonstrated a theoretical possibility of quantitatively monitoring severe acute respiratory syndrome coronavirus (SARS-CoV-2) and human hemoglobin. Considering an extremely small RI change as little as 3 x 10(-7) RIU, a good linear response between detection concentration of SARS-CoV-2 and changes in differential GH shift was studied. For SARS-CoV-2, a linear detection interval was obtained from 0 to 2 nM. For human hemoglobin, a linear detection range was achieved from 0 to 0.002 g/L. Our work will be important to develop novel TBG-enhanced biosensors for quantitatively detecting microorganisms and biomolecules in biomedical application.
引用
收藏
页码:1271 / 1284
页数:14
相关论文
共 48 条
[1]   *BERECHNUNG DER SEITENVERSETZUNG DES TOTALREFLEKTIERTEN STRAHLES [J].
ARTMANN, K .
ANNALEN DER PHYSIK, 1948, 2 (1-2) :87-102
[2]  
Ball V, 1998, BIOPOLYMERS, V46, P489
[3]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[4]   Spectroscopy of Twisted Bilayer Graphene Correlated Insulators [J].
Calugaru, Dumitru ;
Regnault, Nicolas ;
Oh, Myungchul ;
Nuckolls, Kevin P. ;
Wong, Dillon ;
Lee, Ryan L. ;
Yazdani, Ali ;
Vafek, Oskar ;
Bernevig, B. Andrei .
PHYSICAL REVIEW LETTERS, 2022, 129 (11)
[5]   Correlated insulator behaviour at half-filling in magic-angle graphene superlattices [J].
Cao, Yuan ;
Fatemi, Valla ;
Demir, Ahmet ;
Fang, Shiang ;
Tomarken, Spencer L. ;
Luo, Jason Y. ;
Sanchez-Yamagishi, Javier D. ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Kaxiras, Efthimios ;
Ashoori, Ray C. ;
Jarillo-Herrero, Pablo .
NATURE, 2018, 556 (7699) :80-+
[6]  
Choi Y, 2019, NAT PHYS, V15, P1174, DOI 10.1038/s41567-019-0606-5
[7]  
Cui L., 2021, Rev. Phys., V6, DOI [10.1016/j.revip.2021.100054, DOI 10.1016/J.REVIP.2021.100054]
[8]   Effect of the Refractive Index of Buffer Solutions in Evanescent Optical Biosensors [J].
Dieguez, L. ;
Darwish, N. ;
Mir, M. ;
Martinez, E. ;
Moreno, M. ;
Samitier, J. .
SENSOR LETTERS, 2009, 7 (05) :851-855
[9]   Graphene bilayer with a twist: Electronic structure [J].
dos Santos, J. M. B. Lopes ;
Peres, N. M. R. ;
Castro Neto, A. H. .
PHYSICAL REVIEW LETTERS, 2007, 99 (25)
[10]   Sensitivity Enhanced Plasmonic Biosensor Using Bi2Se3-Graphene Heterostructures: A Theoretical Analysis [J].
Du, Fusheng ;
Zheng, Kai ;
Zeng, Shuwen ;
Yuan, Yufeng .
NANOMATERIALS, 2022, 12 (22)