CMI: CRISPR/Cas9 Based Efficient Multiplexed Integration in Saccharomyces cerevisiae

被引:23
作者
Meng, Jie [1 ]
Qiu, Yue [1 ]
Zhang, Yueping [2 ]
Zhao, Huimin [3 ]
Shi, Shuobo [1 ]
机构
[1] Beijing Univ Chem Technol, Coll Life Sci & Technol, Beijing Adv Innovat Ctr Soft Matter Sci & Engn, Beijing 100029, Peoples R China
[2] China Agr Univ, Coll Vet Med, Beijing 100193, Peoples R China
[3] Univ Illinois, Carl R Woese Inst Genom Biol, Dept Chem & Biomol Engn, Champaign, IL 61801 USA
关键词
CRISPR; Cas9; multiplexed integration; S; cerevisiae; Brex27; synthetic biology; metabolic engineering; BIOSYNTHETIC-PATHWAY; GENOME INTEGRATION; C-TERMINUS; CONSTRUCTION;
D O I
10.1021/acssynbio.2c00591
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Genomic integration is the preferred method for gene expression in microbial industrial production. However, traditional homologous recombination based multiplexed integration methods often suffer from low integration efficiency and complex experimental procedures. Here, we report a CRISPR/Cas9 based multiplexed integration (CMI) system in Saccharomyces cerevisiae, which can achieve quadruple integration at an individual locus without pre-engineering the host. A fused protein, Cas9-Brex27, was used as a bait to attract Rad51 recombinase to the proximity of the double-strand breaks introduced by the CRISPR/Cas9 system. The efficiency of quadruple integration was increased to 53.9% with 40 bp homology arms (HAs) and 78% with 100 bp HAs. CMI was applied to integrate a heterologous mogrol biosynthetic pathway consisting of four genes in a one-step transformation and offered an efficient solution for multiplexed integration. This method expands the synthetic biology toolbox of S. cerevisiae.
引用
收藏
页码:1408 / 1414
页数:7
相关论文
共 50 条
[21]   What is CRISPR/Cas9? [J].
Redman, Melody ;
King, Andrew ;
Watson, Caroline ;
King, David .
ARCHIVES OF DISEASE IN CHILDHOOD-EDUCATION AND PRACTICE EDITION, 2016, 101 (04) :213-215
[22]   Development of a CRISPR/Cas9 system for high efficiency multiplexed gene deletion in Rhodosporidium toruloides [J].
Schultz, J. Carl ;
Cao, Mingfeng ;
Zhao, Huimin .
BIOTECHNOLOGY AND BIOENGINEERING, 2019, 116 (08) :2103-2109
[23]   Efficient genome editing of Brassica campestris based on the CRISPR/Cas9 system [J].
Xiong, Xingpeng ;
Liu, Weimiao ;
Jiang, Jianxia ;
Xu, Liai ;
Huang, Li ;
Cao, Jiashu .
MOLECULAR GENETICS AND GENOMICS, 2019, 294 (05) :1251-1261
[24]   Genome-wide Cas9 binding specificity in Saccharomyces cerevisiae [J].
Waldrip, Zachary J. ;
Jenjaroenpun, Piroon ;
DeYoung, Oktawia ;
Nookaew, Intawat ;
Taverna, Sean D. ;
Raney, Kevin D. ;
Tackett, Alan J. .
PEERJ, 2020, 8
[25]   Advancing Metabolic Engineering of Saccharomyces cerevisiae Using the CRISPR/Cas System [J].
Lian, Jiazhang ;
HamediRad, Mohammad ;
Zhao, Huimin .
BIOTECHNOLOGY JOURNAL, 2018, 13 (09)
[26]   Evaluation of Saccharomyces cerevisiae modified via CRISPR/Cas9 as a cellulosic platform microorganism in simultaneously saccharification and fermentation processes [J].
de Melo, Allan H. F. ;
Nunes, Alexia L. ;
Carvalho, Priscila H. ;
da Silva, Marcos F. ;
Teixeira, Gleidson S. ;
Goldbeck, Rosana .
BIOPROCESS AND BIOSYSTEMS ENGINEERING, 2023, 46 (08) :1111-1119
[27]   Integration of CRISPR/Cas9 with artificial intelligence for improved cancer therapeutics [J].
Bhat, Ajaz A. ;
Nisar, Sabah ;
Mukherjee, Soumi ;
Saha, Nirmalya ;
Yarravarapu, Nageswari ;
Lone, Saife N. ;
Masoodi, Tariq ;
Chauhan, Ravi ;
Maacha, Selma ;
Bagga, Puneet ;
Dhawan, Punita ;
Akil, Ammira Al-Shabeeb ;
El-Rifai, Wael ;
Uddin, Shahab ;
Reddy, Ravinder ;
Singh, Mayank ;
Macha, Muzafar A. ;
Haris, Mohammad .
JOURNAL OF TRANSLATIONAL MEDICINE, 2022, 20 (01)
[28]   CRISPR/Cas9-RNA interference system for combinatorial metabolic engineering of Saccharomyces cerevisiae [J].
Kildegaard, Kanchana Rueksomtawin ;
Tramontin, Larissa Ribeiro Ramos ;
Chekina, Ksenia ;
Li, Mingji ;
Goedecke, Tobias Justus ;
Kristensen, Mette ;
Borodina, Irina .
YEAST, 2019, 36 (05) :237-247
[29]   Expanding the CRISPR/Cas9 toolkit for Pichia pastoris with efficient donor integration and alternative resistance markers [J].
Weninger, Astrid ;
Fischer, Jasmin E. ;
Raschmanova, Hana ;
Kniely, Claudia ;
Vogl, Thomas ;
Glieder, Anton .
JOURNAL OF CELLULAR BIOCHEMISTRY, 2018, 119 (04) :3183-3198
[30]   Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing [J].
Zhang, Song ;
Shen, Jiangtao ;
Li, Dali ;
Cheng, Yiyun .
THERANOSTICS, 2021, 11 (02) :614-648