CMI: CRISPR/Cas9 Based Efficient Multiplexed Integration in Saccharomyces cerevisiae

被引:17
作者
Meng, Jie [1 ]
Qiu, Yue [1 ]
Zhang, Yueping [2 ]
Zhao, Huimin [3 ]
Shi, Shuobo [1 ]
机构
[1] Beijing Univ Chem Technol, Coll Life Sci & Technol, Beijing Adv Innovat Ctr Soft Matter Sci & Engn, Beijing 100029, Peoples R China
[2] China Agr Univ, Coll Vet Med, Beijing 100193, Peoples R China
[3] Univ Illinois, Carl R Woese Inst Genom Biol, Dept Chem & Biomol Engn, Champaign, IL 61801 USA
来源
ACS SYNTHETIC BIOLOGY | 2023年 / 12卷 / 05期
关键词
CRISPR; Cas9; multiplexed integration; S; cerevisiae; Brex27; synthetic biology; metabolic engineering; BIOSYNTHETIC-PATHWAY; GENOME INTEGRATION; C-TERMINUS; CONSTRUCTION;
D O I
10.1021/acssynbio.2c00591
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Genomic integration is the preferred method for gene expression in microbial industrial production. However, traditional homologous recombination based multiplexed integration methods often suffer from low integration efficiency and complex experimental procedures. Here, we report a CRISPR/Cas9 based multiplexed integration (CMI) system in Saccharomyces cerevisiae, which can achieve quadruple integration at an individual locus without pre-engineering the host. A fused protein, Cas9-Brex27, was used as a bait to attract Rad51 recombinase to the proximity of the double-strand breaks introduced by the CRISPR/Cas9 system. The efficiency of quadruple integration was increased to 53.9% with 40 bp homology arms (HAs) and 78% with 100 bp HAs. CMI was applied to integrate a heterologous mogrol biosynthetic pathway consisting of four genes in a one-step transformation and offered an efficient solution for multiplexed integration. This method expands the synthetic biology toolbox of S. cerevisiae.
引用
收藏
页码:1408 / 1414
页数:7
相关论文
共 50 条
[11]   EasyGuide Plasmids Support in Vivo Assembly of gRNAs for CRISPR/ Cas9 Applications in Saccharomyces cerevisiae [J].
Jacobus, Ana P. ;
Barreto, Joneclei A. . ;
Bem, Lucas S. de ;
Menegon, Yasmine A. . ;
Fier, Icaro ;
Bueno, Joao G. R. ;
Santos, Leandro V. dos ;
Gross, Jeferson .
ACS SYNTHETIC BIOLOGY, 2022, 11 (11) :3886-3891
[12]   Optimization of multiplexed CRISPR/Cas9 system for highly efficient genome editing inSetaria viridis [J].
Weiss, Trevor ;
Wang, Chunfang ;
Kang, Xiaojun ;
Zhao, Hui ;
Elena Gamo, Maria ;
Starker, Colby G. ;
Crisp, Peter A. ;
Zhou, Peng ;
Springer, Nathan M. ;
Voytas, Daniel F. ;
Zhang, Feng .
PLANT JOURNAL, 2020, 104 (03) :828-838
[13]   Engineering Saccharomyces cerevisiae for targeted hydrolysis and fermentation of glucuronoxylan through CRISPR/Cas9 genome editing [J].
Jonas L. Ravn ;
João H.C. Manfrão-Netto ;
Jana B. Schaubeder ;
Luca Torello Pianale ;
Stefan Spirk ;
Iván F. Ciklic ;
Cecilia Geijer .
Microbial Cell Factories, 23
[14]   Engineering Saccharomyces cerevisiae for targeted hydrolysis and fermentation of glucuronoxylan through CRISPR/Cas9 genome editing [J].
Ravn, Jonas L. ;
Manfrao-Netto, Joao H. C. ;
Schaubeder, Jana B. ;
Torello Pianale, Luca ;
Spirk, Stefan ;
Ciklic, Ivan F. ;
Geijer, Cecilia .
MICROBIAL CELL FACTORIES, 2024, 23 (01)
[15]   Engineering CRISPR/Cas9 for Multiplexed Recombinant Coagulation Factor Production [J].
Feser, Colby J. ;
Lees, Christopher J. ;
Lammers, Daniel T. ;
Riddle, Megan J. ;
Bingham, Jason R. ;
Eckert, Matthew J. ;
Tolar, Jakub ;
Osborn, Mark J. .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (09)
[16]   Easy efficient HDR-based targeted knock-in in Saccharomyces cerevisiae genome using CRISPR-Cas9 system [J].
Singh, Rajveer ;
Chandel, Shivani ;
Ghosh, Arijit ;
Gautam, Anupam ;
Huson, Daniel H. ;
Ravichandiran, V. ;
Ghosh, Dipanjan .
BIOENGINEERED, 2022, 13 (06) :14857-14871
[17]   Improved bioethanol production using CRISPR/Cas9 to disrupt the ADH2 gene in Saccharomyces cerevisiae [J].
Ting Xue ;
Kui Liu ;
Duo Chen ;
Xue Yuan ;
Jingping Fang ;
Hansong Yan ;
Luqiang Huang ;
Youqiang Chen ;
Wenjin He .
World Journal of Microbiology and Biotechnology, 2018, 34
[18]   Improved bioethanol production using CRISPR/Cas9 to disrupt the ADH2 gene in Saccharomyces cerevisiae [J].
Xue, Ting ;
Liu, Kui ;
Chen, Duo ;
Yuan, Xue ;
Fang, Jingping ;
Yan, Hansong ;
Huang, Luqiang ;
Chen, Youqiang ;
He, Wenjin .
WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2018, 34 (10)
[19]   A teaching protocol demonstrating the use of EasyClone and CRISPR/Cas9 for metabolic engineering of Saccharomyces cerevisiae and Yarrowia lipolytica [J].
Milne, N. ;
Tramontin, L. R. R. ;
Borodina, I .
FEMS YEAST RESEARCH, 2020, 20 (02)
[20]   Tuning CRISPR-Cas9 Gene Drives in Saccharomyces cerevisiae [J].
Roggenkamp, Emily ;
Giersch, Rachael M. ;
Schrock, Madison N. ;
Turnquist, Emily ;
Halloran, Megan ;
Finnigan, Gregory C. .
G3-GENES GENOMES GENETICS, 2018, 8 (03) :999-1018