Millimeter-Wave CMOS Low-Noise Amplifier With High Gain and Compact Footprint

被引:3
作者
Qian, Yun [1 ]
Shen, Yizhu [1 ,2 ]
Hu, Sanming [1 ,2 ]
机构
[1] Southeast Univ, Sch Informat Sci & Engn, State Key Lab Millimeter Waves, Nanjing 210096, Peoples R China
[2] Purple Mt Labs, Nanjing 211111, Peoples R China
来源
IEEE MICROWAVE AND WIRELESS TECHNOLOGY LETTERS | 2023年 / 33卷 / 06期
基金
中国国家自然科学基金;
关键词
Gain; Noise measurement; Inductors; Bandwidth; Topology; Millimeter wave technology; Semiconductor device measurement; CMOS; fifth-generation millimeter-Wave (5G mm-Wave); gain-boosting; high gain; low noise amplifier; LNA; BANDWIDTH;
D O I
10.1109/LMWT.2023.3246166
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
For millimeter-Wave (mm-Wave) communications, this letter proposes a low-noise amplifier (LNA) topology by using gain-boosting and negative feedback techniques. In the proposed two-stage LNA, the first stage combines these two techniques to achieve a trade-off between gain and bandwidth. Following that, in the cascode structure, inductors are used to compensate for the parasitic capacitance of the transistors. To validate the proposed topology at a low cost, an mm-Wave LNA is designed and fabricated in a 180 nm CMOS process. Using two stages only, it achieves a maximum gain of 14.1 dB at 24.8 GHz, which is comparable to that of classical LNAs with three stages, and the chip footprint is reduced by 43%.
引用
收藏
页码:699 / 702
页数:4
相关论文
共 10 条
[1]   A 24-GHz CMOS front-end [J].
Guan, X ;
Hajimiri, A .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2004, 39 (02) :368-373
[2]   A Transformer Feedback Gm-Boosting Technique for Gain Improvement and Noise Reduction in mm-Wave Cascode LNAs [J].
Guo, Shita ;
Xi, Tianzuo ;
Gui, Ping ;
Huang, Daquan ;
Fan, Yanli ;
Morgan, Mark .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2016, 64 (07) :2080-2090
[3]   A Dual-Band 10/24-GHz Amplifier Design Incorporating Dual-Frequency Complex Load Matching [J].
Hsieh, Kai-An ;
Wu, Hsien-Shun ;
Tsai, Kun-Hung ;
Tzuang, Ching-Kuang Clive .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2012, 60 (06) :1649-1657
[4]   A 28 GHz LNA using defected ground structure for 5G application [J].
Luo, Jiang ;
He, Jin ;
Wang, Hao ;
Chang, Sheng ;
Huang, Qijun ;
Yu, Xiao-Peng .
MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2018, 60 (05) :1067-1072
[5]   A Broadband Multistage LNA With Bandwidth and Linearity Enhancement [J].
Nikandish, Gholamreza ;
Yousefi, Alireza ;
Kalantari, Milad .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2016, 26 (10) :834-836
[6]   Compact Wideband LNA With Gain and Input Matching Bandwidth Extensions by Transformer [J].
Qin, Pei ;
Xue, Quan .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2017, 27 (07) :657-659
[7]   A 60-GHz CMOS receiver front-end [J].
Razavi, B .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2006, 41 (01) :17-22
[8]   K-Band low-noise amplifiers using 0.18 μm CMOS technology [J].
Yu, KW ;
Lu, YL ;
Chang, DC ;
Liang, V ;
Chang, MF .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2004, 14 (03) :106-108
[9]  
Zhao DX, 2021, IEEE T CIRCUITS-I, V68, P3977, DOI 10.1109/TCSI.2021.3093093
[10]  
Zhichao Zhang, 2012, 2012 IEEE International Conference on Ultra-Wideband (ICUWB2012), P375, DOI 10.1109/ICUWB.2012.6340422