Nontrivial solutions for a fourth-order Riemann-Stieltjes integral boundary value problem

被引:2
作者
Zhang, Keyu [1 ]
Li, Yaohong [2 ]
Xu, Jiafa [3 ]
O'Regan, Donal [4 ]
机构
[1] Qilu Normal Univ, Sch Math, Jinan 250013, Peoples R China
[2] Suzhou Univ, Sch Math & Stat, Suzhou 234000, Peoples R China
[3] Chongqing Normal Univ, Sch Math Sci, Chongqing 401331, Peoples R China
[4] Univ Galway, Sch Math & Stat Sci, Galway, Ireland
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 04期
关键词
fourth-order differential equation; integral boundary value problem; topological degree; upper-lower solution; nontrivial solutions; extremal solutions; POSITIVE SOLUTIONS; DIFFERENTIAL-EQUATIONS; EXISTENCE; BEAM; EIGENVALUE;
D O I
10.3934/math.2023458
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study a fourth-order differential equation with Riemann-Stieltjes integral boundary conditions. We consider two cases, namely when the nonlinearity satisfies superlinear growth conditions (we use topological degree to obtain an existence theorem on nontrivial solutions), when the nonlinearity satisfies a one-sided Lipschitz condition (we use the method of upper-lower solutions to obtain extremal solutions).
引用
收藏
页码:9146 / 9165
页数:20
相关论文
共 35 条
  • [1] Boundary Value Problems of Nonlinear Fractional q-Difference (Integral) Equations with Two Fractional Orders and Four-point Nonlocal Integral Boundary Conditions
    Ahmad, Bashir
    Nieto, Juan J.
    Alsaedi, Ahmed
    Al-Hutami, Hana
    [J]. FILOMAT, 2014, 28 (08) : 1719 - 1736
  • [2] Fundamental results on weighted Caputo-Fabrizio fractional derivative
    Al-Refai, Mohammed
    Jarrah, Abdulla M.
    [J]. CHAOS SOLITONS & FRACTALS, 2019, 126 : 7 - 11
  • [3] On a coupled system of higher order nonlinear Caputo fractional differential equations with coupled Riemann-Stieltjes type integro-multipoint boundary conditions
    Alsaedi, Ahmed
    Ahmad, Bashir
    Alruwaily, Ymnah
    Ntouyas, Sotiris K.
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [4] TWO-SCALE FRACTAL THEORY FOR THE POPULATION DYNAMICS
    Anjum, Naveed
    He, Chun-Hui
    He, Ji-Huan
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (07)
  • [5] NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL Theory and Application to Heat Transfer Model
    Atangana, Abdon
    Baleanu, Dumitru
    [J]. THERMAL SCIENCE, 2016, 20 (02): : 763 - 769
  • [6] Existence results for a clamped beam equation with integral boundary conditions
    Cabada, Alberto
    Jebari, Rochdi
    [J]. ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2020, (70) : 1 - 17
  • [7] A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics
    Cances, E
    Mennucci, B
    Tomasi, J
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (08) : 3032 - 3041
  • [8] Caputo M., 2015, PROGR FRACT DIFFER A, V1, P73, DOI DOI 10.12785/PFDA/010201
  • [9] On the maximum and antimaximum principles for the beam equation
    Drabek, P.
    Holubova, G.
    [J]. APPLIED MATHEMATICS LETTERS, 2016, 56 : 29 - 33
  • [10] Positive and negative solutions of one-dimensional beam equation
    Drabek, Pavel
    Holubova, Gabriela
    [J]. APPLIED MATHEMATICS LETTERS, 2016, 51 : 1 - 7