Stability of thermoelastic Timoshenko beam with suspenders and time-varying feedback

被引:11
作者
Mukiawa, Soh Edwin [1 ]
Enyi, Cyril Dennis [1 ]
Messaoudi, Salim A. [2 ]
机构
[1] Univ Hafr Al Batin, Dept Math, Hafar al Batin 31991, Saudi Arabia
[2] Univ Sharjah, Dept Math & Stat, Sharjah, U Arab Emirates
来源
ADVANCES IN CONTINUOUS AND DISCRETE MODELS | 2023年 / 2023卷 / 01期
关键词
General decay; Timoshenko beam; Thermoelasticity; Suspenders; Time delay; WAVE-EQUATION; DELAY; OSCILLATIONS; BOUNDARY; DYNAMICS; ENERGY; DECAY;
D O I
10.1186/s13662-023-03752-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers a one-dimensional thermoelastic Timoshenko beam system with suspenders, general weak internal damping with time varying coefficient, and time-varying delay terms. Under suitable conditions on the nonlinear terms, we prove a general stability result for the beam model, where exponential and polynomial decay are special cases. We also gave some examples to illustrate our theoretical finding.
引用
收藏
页数:19
相关论文
共 35 条
[1]  
Ahmed NU, 1998, SIAM J APPL MATH, V58, P853
[2]  
[Anonymous], 1985, Abstract Differential Equations and Nonlinear Mixed Problems
[3]  
Arnold VI, 1989, Mathematical Methods of Classical Mechanics, DOI [10.1007/978-1-4757-2063-1, DOI 10.1007/978-1-4757-2063-1]
[4]   General decay estimate for a two-dimensional plate equation with time-varying feedback and time-varying coefficient [J].
Audu, Johnson D. ;
Mukiawa, Soh Edwin ;
Almeida Junior, Dilberto S. .
RESULTS IN APPLIED MATHEMATICS, 2021, 12
[5]  
Benaissa A, 2014, ELECTRON J QUAL THEO, P1
[6]   Global existence and energy decay of solutions for the wave equation with a time varying delay term in the weakly nonlinear internal feedbacks [J].
Benaissa, Abbes ;
Benaissa, Abdelkader ;
Messaoudi, Salim. A. .
JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (12)
[7]   Analysis of a thermoelastic Timoshenko beam model [J].
Bochicchio, Ivana ;
Campo, Marco ;
Fernandez, Jose R. ;
Naso, Maria Grazia .
ACTA MECHANICA, 2020, 231 (10) :4111-4127
[8]   Long-Term Damped Dynamics of the Extensible Suspension Bridge [J].
Bochicchio, Ivana ;
Giorgi, Claudio ;
Vuk, Elena .
INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 2010
[9]   Autonomous and non-autonomous attractors for differential equations with delays [J].
Caraballo, T ;
Marín-Rubio, P ;
Valero, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 208 (01) :9-41
[10]   Neurocomputing with time delay analysis for solving convex quadratic programming problems [J].
Chen, YH ;
Fang, SC .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2000, 11 (01) :230-240