Anti-self-dual connections over the 5D Heisenberg group and the twistor method

被引:4
作者
Ren, Guangzhen [1 ]
Wang, Wei [2 ]
机构
[1] Zhejiang Int Studies Univ, Dept Math, Hangzhou 310023, Peoples R China
[2] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
关键词
The 5D Heisenberg group; -planes; Anti-self-dual connection; The contact instanton equation; Penrose-Ward correspondence; Atiyah-Ward ans?tz;
D O I
10.1016/j.geomphys.2022.104699
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By introducing notions of an alpha-plane in the 5D complex Heisenberg group and the twistor space as the moduli space of all alpha-planes, we can define an anti-self-dual (ASD) connection as a connection flat over all alpha-planes. This geometric approach allows us to establish the Penrose-Ward correspondence between ASD connections over the 5D complex Heisenberg group and a class of holomorphic vector bundles on the twistor space. By Atiyah-Ward ansatz, we also construct ASD connections on the 5D complex Heisenberg group. When restricted to the 5D real Heisenberg group, the flat model of 5D contact manifolds, an ASD connection satisfies the horizontal part of the contact instanton equation.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 20 条
[1]  
[Anonymous], 2010, Solitons, Instantons, and Twistors
[2]  
[Anonymous], 1990, CAMBRIDGE MONOGRAPHS
[3]  
Baston R.J., 1989, Oxford Mathematical Monographs
[4]  
Donaldson SK, 1998, GEOMETRIC UNIVERSE, P31
[5]   CO-HOMOLOGY AND MASSLESS FIELDS [J].
EASTWOOD, MG ;
PENROSE, R ;
WELLS, RO .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 78 (03) :305-351
[6]   Supersymmetric gauge theories on the five-sphere [J].
Hosomichi, Kazuo ;
Seong, Rak-Kyeong ;
Terashima, Seiji .
NUCLEAR PHYSICS B, 2012, 865 (02) :376-396
[7]   Contact metric 5-manifolds, CR twistor spaces and integrability [J].
Itoh, M .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (07) :3783-3797
[8]   Twisted supersymmetric 5D Yang-Mills theory and contact geometry [J].
Kallen, Johan ;
Zabzine, Maxim .
JOURNAL OF HIGH ENERGY PHYSICS, 2012, (05)
[9]  
Manin Y. I., 1997, Gauge Field Theory and Complex Geometry, V2nd
[10]   Conformal field theories in six-dimensional twistor space [J].
Mason, L. J. ;
Reid-Edwards, R. A. ;
Taghavi-Chabert, A. .
JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (12) :2353-2375