A federated multi-agent deep reinforcement learning for vehicular fog computing

被引:6
|
作者
Shabir, Balawal [1 ]
Rahman, Anis U. [1 ]
Malik, Asad Waqar [1 ]
Buyya, Rajkumar [2 ]
Khan, Muazzam A. [3 ]
机构
[1] Natl Univ Sci & Technol NUST, Sch Elect Engn & Comp Sci, Islamabad, Pakistan
[2] Univ Melbourne, Sch Comp & Informat Syst, Melbourne, Vic, Australia
[3] Quaid I Azam Univ, Dept Comp Sci, Islamabad, Pakistan
来源
JOURNAL OF SUPERCOMPUTING | 2023年 / 79卷 / 06期
关键词
Deep reinforcement learning; Federated learning; Computation offloading; A3C; Advantage function; Residence time;
D O I
10.1007/s11227-022-04911-8
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Vehicular fog computing is an emerging paradigm for delay-sensitive computations. In this highly dynamic resource-sharing environment, optimal offloading decision for effective resource utilization is a challenging task. In recent years, deep reinforcement learning has emerged as an effective approach for dealing with resource allocation problems because of its self-adapting nature in a large state space scenario. However, due to high mobility and rapid changes in the network topology cause fluctuating task arrival rate. Similarly, the data sharing between the vehicles and the fog nodes raises a variety of security and privacy concerns. Therefore, the proposed system is based on local and global model training approaches. In this paper, we propose a federated multi-agent deep reinforcement learning solution that efficiently learns task-offloading decisions at multiple tiers i.e. locally and globally. The proposed work results in fast convergence due to its collaborative learning model among vehicles and fog servers. The local model runs at the vehicular nodes, and the global model runs at the fog servers. To reduce network overhead, the models are learned locally; thus, limited information is shared across the network this reduces the communication overhead and improves the privacy of the agents. The proposed system is compared with the greedy and stochastic approaches in terms of residence times, cost, delivery rate, and utilization ratio. We observed that the proposed approach has significantly reduced the task residence time, end-to-end delay and overall system cost.
引用
收藏
页码:6141 / 6167
页数:27
相关论文
共 50 条
  • [1] A federated multi-agent deep reinforcement learning for vehicular fog computing
    Balawal Shabir
    Anis U. Rahman
    Asad Waqar Malik
    Rajkumar Buyya
    Muazzam A. Khan
    The Journal of Supercomputing, 2023, 79 : 6141 - 6167
  • [2] Hierarchical Task Offloading for Vehicular Fog Computing Based on Multi-Agent Deep Reinforcement Learning
    Hou, Yukai
    Wei, Zhiwei
    Zhang, Rongqing
    Cheng, Xiang
    Yang, Liuqing
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (04) : 3074 - 3085
  • [3] Many-to-Many Task Offloading in Vehicular Fog Computing: A Multi-Agent Deep Reinforcement Learning Approach
    Wei, Zhiwei
    Li, Bing
    Zhang, Rongqing
    Cheng, Xiang
    Yang, Liuqing
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (03) : 2107 - 2122
  • [4] Multi-Agent Deep Reinforcement Learning in Vehicular OCC
    Islam, Amirul
    Musavian, Leila
    Thomos, Nikolaos
    2022 IEEE 95TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-SPRING), 2022,
  • [5] Federated Deep Reinforcement Learning-Based Task Allocation in Vehicular Fog Computing
    Shi, Jinming
    Du, Jun
    Wang, Jian
    Yuan, Jian
    2022 IEEE 95TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-SPRING), 2022,
  • [6] Advancing Multi-Agent Systems Integrating Federated Learning with Deep Reinforcement Learning : A Survey
    Kim, Jaemin
    Kim, Gahyun
    Hong, Seonghun
    Cho, Sungrae
    2024 FIFTEENTH INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS, ICUFN 2024, 2024, : 55 - 57
  • [7] Federated Dynamic Spectrum Access through Multi-Agent Deep Reinforcement Learning
    Song, Yifei
    Chang, Hao-Hsuan
    Liu, Lingjia
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 3466 - 3471
  • [8] Scalable order dispatching through Federated Multi-Agent Deep Reinforcement Learning
    Jing, Yao
    Guo, Bin
    Li, Nuo
    Ding, Yasan
    Liu, Yan
    Yu, Zhiwen
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 264
  • [9] Network slicing for vehicular communications: a multi-agent deep reinforcement learning approach
    Mlika, Zoubeir
    Cherkaoui, Soumaya
    ANNALS OF TELECOMMUNICATIONS, 2021, 76 (9-10) : 665 - 683
  • [10] Network slicing for vehicular communications: a multi-agent deep reinforcement learning approach
    Zoubeir Mlika
    Soumaya Cherkaoui
    Annals of Telecommunications, 2021, 76 : 665 - 683