ZnFe2O4 nanospheres decorated residual carbon from coal gasification fine slag as an ultra-thin microwave absorber

被引:58
作者
Zhang, Xingzhao [1 ]
Zhang, Yuanchun [1 ]
He, Jun [1 ]
Li, Hanxu [1 ]
Bai, Yonghui [2 ]
Gao, Shengtao [1 ]
机构
[1] Anhui Univ Sci & Technol, Sch Chem Engn, Huainan 232001, Peoples R China
[2] Ningxia Univ, State Key Lab High Efficiency Utilizat Coal & Gree, Yinchaun 750021, Peoples R China
关键词
Coal gasification fine slag; Residual carbon; ZnFe2O4; Microwave absorption; ABSORPTION PERFORMANCE; FE3O4; NANOPARTICLES; FACILE SYNTHESIS; MICROSPHERES; COMPOSITES; NANOCOMPOSITES; DESIGN; PERMITTIVITY; TEMPERATURE; NANOFIBERS;
D O I
10.1016/j.fuel.2022.125811
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Microwave absorbers are commonly utilized in radar stealth and anti-stealth to improve battlefield penetration rates and equipment safety. The ZnFe2O4/residual carbon (ZFO/RC) nanocomposites were fabricated via a hydrothermal synthesis method. The RC was extracted by acid treatment of coal gasification fine slag (CGFS) to eliminate inorganic minerals. The crystal structure, micro-morphology, chemical compositions, and corresponding electromagnetic characteristics of the as-fabricated ZFO/RC composites were investigated. The synthesized nano-micro size ZFO/RC demonstrated excellent electromagnetic wave absorption (EMWA) property. The ZFO/RC-3 composites had exceptional EMWA performance with a minimum reflection loss (RLmin) of -46.33 dB at 13.04 GHz and a maximum effective absorption bandwidth (EAB, RL <= -10 dB) that reached 2.96 GHz (11.76-14.72 GHz) at a thickness of 1.48 mm. The EMWA ability of ZFO/RC can be adjusted by controlling the filler loading composites. Benefit from interface polarization, superb impedance matching of the special heterostructure, and conductive loss, the ZFO/RC composites can absorb 99 % of the waves passing through it under ideal conditions. The CST simulation evidently demonstrated that the ZFO/RC-3 composites can notably reduce the radar cross section reduction value under the actual conditions. These composites can serve as possible ultra-thin microwave absorbers with excellent EMWA capability, thus advancing solid waste utilization of residual carbon from entrained-flow CGFS.
引用
收藏
页数:11
相关论文
共 81 条
[1]   Embellishing hierarchical 3D core-shell nanosheet arrays of ZnFe2O4@NiMoO4 onto rGO-Ni foam as a binder-free electrode for asymmetric supercapacitors with excellent electrochemical performance [J].
Acharya, Jiwan ;
Pant, Bishweshwar ;
Ojha, Gunendra Prasad ;
Park, Mira .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 610 :863-878
[2]   Microwave absorption enhancement of 2-dimensional CoZn/C@MoS2@PPy composites derived from metal-organic framework [J].
Bi, Yuxin ;
Ma, Mingliang ;
Liu, Yanyan ;
Tong, Zhouyu ;
Wang, Rongzhen ;
Chung, Kwok L. ;
Ma, Aijie ;
Wu, Guanglei ;
Ma, Yong ;
He, Changpeng ;
Liu, Pan ;
Hu, Luying .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 600 :209-218
[3]   Ferroferric Oxide/Multiwalled Carbon Nanotube vs Polyaniline/Ferroferric Oxide/Multiwalled Carbon Nanotube Multiheterostructures for Highly Effective Microwave Absorption [J].
Cao, Mao-Sheng ;
Yang, Jian ;
Song, Wei-Li ;
Zhang, De-Qing ;
Wen, Bo ;
Jin, Hai-Bo ;
Hou, Zhi-Ling ;
Yuan, Jie .
ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (12) :6949-6956
[4]   Synergistic construction of three-dimensional conductive network and double heterointerface polarization via magnetic FeNi for broadband microwave absorption [J].
Cao, Xiaolong ;
Jia, Zirui ;
Hu, Dongqi ;
Wu, Guanglei .
ADVANCED COMPOSITES AND HYBRID MATERIALS, 2022, 5 (02) :1030-1043
[5]   In-situ growth of core-shell ZnFe2O4 @ porous hollow carbon microspheres as an efficient microwave absorber [J].
Chai, Liang ;
Wang, Yiqun ;
Zhou, Nifan ;
Du, Yu ;
Zeng, Xiaodong ;
Zhou, Shiyi ;
He, Qinchuan ;
Wu, Guanglei .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 581 :475-484
[6]   Hierarchical surface engineering of carbon fiber for enhanced composites interfacial properties and microwave absorption performance [J].
Cheng, Zheng ;
Cao, Yishu ;
Wang, Ruofeng ;
Xia, Lun ;
Ma, Suping ;
Li, Zhuo ;
Cai, Zhihao ;
Zhang, Zhiwei ;
Huang, Yi .
CARBON, 2021, 185 :669-680
[7]   Heterostructure design of Ni/C/porous carbon nanosheet composite for enhancing the electromagnetic wave absorption [J].
Di, Xiaochuang ;
Wang, Yan ;
Lu, Zhao ;
Cheng, Runrun ;
Yang, Longqi ;
Wu, Xinming .
CARBON, 2021, 179 :566-578
[8]   Wheat flour-derived nanoporous carbon@ZnFe2O4 hierarchical composite as an outstanding microwave absorber [J].
Di, Xiaochuang ;
Wang, Yan ;
Fu, Yuqiao ;
Wu, Xinming ;
Wang, Ping .
CARBON, 2021, 173 (173) :174-184
[9]   Magnetically Separable ZnFe2O4-Graphene Catalyst and its High Photocatalytic Performance under Visible Light Irradiation [J].
Fu, Yongsheng ;
Wang, Xin .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2011, 50 (12) :7210-7218
[10]   3D porous nickel metal foam/polyaniline heterostructure with excellent electromagnetic interference shielding capability and superior absorption based on pre-constructed macroscopic conductive framework [J].
Gao, Han ;
Wang, Chenhui ;
Yang, Zhangjing ;
Zhang, Yang .
COMPOSITES SCIENCE AND TECHNOLOGY, 2021, 213 (213)