Why No Reference Metrics for Image and Video Quality Lack Accuracy and Reproducibility

被引:8
|
作者
Pinson, Margaret H. [1 ]
机构
[1] Natl Telecommun & Informat Adm, Inst Telecommun Sci, Boulder, CO 80305 USA
关键词
Measurement; Cameras; Media; Video recording; Quality assessment; Industries; Correlation; Image quality; metric; no reference; NR; root cause analysis; RCA; Sawatch; video quality; NATURAL SCENE STATISTICS; INTEGRITY; DATABASE; SCALE;
D O I
10.1109/TBC.2022.3191059
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article provides a comprehensive overview of no reference (NR) metrics for image quality analysis (IQA) and video quality analysis (VQA). We examine 26 independent evaluations of NR metrics (previously published) and analyze 32 NR metrics on six IQA datasets and six VQA datasets (new results). Where NR metric developers claim Pearson correlation values between 0.66 and 0.99, our measurements range from 0.0 to 0.63. None of the NR metrics we analyzed are accurate enough to be deployed by industry. Performance evaluations that indicate otherwise are based on insufficient data and highly inaccurate. We will examine development strategies, tools, datasets, root cause analysis, and our baseline metric for collaboration, Sawatch.
引用
收藏
页码:97 / 117
页数:21
相关论文
共 50 条
  • [31] Hybrid No-Reference Video Quality Prediction
    Davis, Andrew G.
    Bayart, Damien
    Hands, David S.
    BMSB: 2009 IEEE INTERNATIONAL SYMPOSIUM ON BROADBAND MULTIMEDIA SYSTEMS AND BROADCASTING, VOLS 1 AND 2, 2009, : 484 - 489
  • [32] End-to-End Image Patch Quality Assessment for Image/Video With Compression Artifacts
    Tung Thanh Pham
    Xiem Van Hoang
    Nghia Trung Nguyen
    Duong Trieu Dinh
    Le Thanh Ha
    IEEE ACCESS, 2020, 8 : 215157 - 215172
  • [33] Image metrics for predicting subjective image quality
    Chen, L
    Singer, B
    Guirao, A
    Porter, J
    Williams, DR
    OPTOMETRY AND VISION SCIENCE, 2005, 82 (05) : 358 - 369
  • [34] No-Reference Image Quality Assessment Based on SVM for Video Conferencing System
    Yu, Liangqiang
    Tian, Xin
    Li, Tao
    Tian, Jinwen
    NETWORK COMPUTING AND INFORMATION SECURITY, 2012, 345 : 555 - 560
  • [35] No-reference image and video quality assessment: a classification and review of recent approaches
    Shahid, Muhammad
    Rossholm, Andreas
    Lovstrom, Benny
    Zepernick, Hans-Jurgen
    EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2014,
  • [36] No-reference image and video quality assessment: a classification and review of recent approaches
    Muhammad Shahid
    Andreas Rossholm
    Benny Lövström
    Hans-Jürgen Zepernick
    EURASIP Journal on Image and Video Processing, 2014
  • [37] IMPACT OF SUBJECTIVE DATASET ON THE PERFORMANCE OF IMAGE QUALITY METRICS
    Tourancheau, Sylvain
    Autrusseau, Florent
    Sazzad, Z. M. Parvez
    Horita, Yuukou
    2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5, 2008, : 365 - 368
  • [38] Video quality metrics toolkit: An open source software to assess video quality
    Moina-Rivera, Wilmer
    Gutierrez-Aguado, Juan
    Garcia-Pineda, Miguel
    SOFTWAREX, 2023, 23
  • [39] Image quality metrics for the evaluation of print quality
    Pedersen, Marius
    Bonnier, Nicolas
    Hardeberg, Jon Y.
    Albregtsen, Fritz
    IMAGE QUALITY AND SYSTEM PERFORMANCE VIII, 2011, 7867
  • [40] An improved model for no-reference image quality assessment and a no-reference video quality assessment model based on frame analysis
    Rohil, Mukesh Kumar
    Gupta, Neetika
    Yadav, Prakash
    SIGNAL IMAGE AND VIDEO PROCESSING, 2020, 14 (01) : 205 - 213