Predicting Web Survey Breakoffs Using Machine Learning Models

被引:0
|
作者
Chen, Zeming [1 ]
Cernat, Alexandru [2 ]
Shlomo, Natalie [2 ]
机构
[1] Univ Manchester, Social Stat Dept, Manchester, Lancs, England
[2] Univ Manchester, Social Stat Dept, Social Stat, Manchester, Lancs, England
关键词
breakoff timing; time-varying variables; Cox model; LASSO Cox model; logistic regression; random forest; gradient boosting; support vector machine; RATES; TREE;
D O I
10.1177/08944393221112000
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Web surveys are becoming increasingly popular but tend to have more breakoffs compared to the interviewer-administered surveys. Survey breakoffs occur when respondents quit the survey partway through. The Cox survival model is commonly used to understand patterns of breakoffs. Nevertheless, there is a trend to using more data-driven models when the purpose is prediction, such as classification machine learning models. It is unclear in the breakoff literature what are the best statistical models for predicting question-level breakoffs. Additionally, there is no consensus about the treatment of time-varying question-level predictors, such as question response time and question word count. While some researchers use the current values, others aggregate the value from the beginning of the survey. This study develops and compares both survival models and classification models along with different treatments of time-varying variables. Based on the level of agreement between the predicted and actual breakoff, we find that the Cox model and gradient boosting outperform other survival models and classification models respectively. We also find that using the values of time-varying predictors concurrent to the breakoff status is more predictive of breakoff, compared to aggregating their values from the beginning of the survey, implying that respondents' breakoff behaviour is more driven by the current response burden.
引用
收藏
页码:573 / 591
页数:19
相关论文
共 50 条
  • [21] Predicting Smart Building Occupancy Using Machine Learning
    Singh, Abhishek
    Kansal, Vineet
    Gaur, Manish
    Pandey, Mahima Shanker
    PROCEEDINGS OF THIRD DOCTORAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE, DOSCI 2022, 2023, 479 : 145 - 151
  • [22] Predicting liver disorder based on machine learning models
    Zhao, Jing
    Wang, Peixia
    Pan, Yubiao
    JOURNAL OF ENGINEERING-JOE, 2022, 2022 (10): : 978 - 984
  • [23] Predicting Student Performance Using Machine Learning in fNIRS Data
    Oku, Amanda Yumi Ambriola
    Sato, Joao Ricardo
    FRONTIERS IN HUMAN NEUROSCIENCE, 2021, 15
  • [24] Comparative analysis of regression and machine learning methods for predicting fault proneness models
    Singh, Yogesh
    Kaur, Arvinder
    Malhotra, Ruchika
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2009, 35 (2-4) : 183 - 193
  • [25] Automated Landslide-Risk Prediction Using Web GIS and Machine Learning Models
    Tengtrairat, Naruephorn
    Woo, Wai Lok
    Parathai, Phetcharat
    Aryupong, Chuchoke
    Jitsangiam, Peerapong
    Rinchumphu, Damrongsak
    SENSORS, 2021, 21 (13)
  • [26] Predicting pedestrian crash occurrence and injury severity in Texas using tree-based machine learning models
    Zhao, Bo
    Zuniga-Garcia, Natalia
    Xing, Lu
    Kockelman, Kara M.
    TRANSPORTATION PLANNING AND TECHNOLOGY, 2024, 47 (08) : 1205 - 1226
  • [27] Spatial modeling of land subsidence using machine learning models and statistical methods
    Mohsen Abbasi Sekkeravani
    Ommolbanin Bazrafshan
    Hamid Reza Pourghasemi
    Arashk Holisaz
    Environmental Science and Pollution Research, 2022, 29 : 28866 - 28883
  • [28] Spatial modeling of land subsidence using machine learning models and statistical methods
    Sekkeravani, Mohsen Abbasi
    Bazrafshan, Ommolbanin
    Pourghasemi, Hamid Reza
    Holisaz, Arashk
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (19) : 28866 - 28883
  • [29] Predicting landslide susceptibility based on decision tree machine learning models under climate and land use changes
    Quoc Bao Pham
    Pal, Subodh Chandra
    Chakrabortty, Rabin
    Saha, Asish
    Janizadeh, Saeid
    Ahmadi, Kourosh
    Khedher, Khaled Mohamed
    Duong Tran Anh
    Tiefenbacher, John P.
    Bannari, Abderrazak
    GEOCARTO INTERNATIONAL, 2022, 37 (25) : 7881 - 7907
  • [30] Using applications of machine learning models for predicting and analyzing scour depth at the submerged weir
    Ghanim, Abdulnoor
    Ahmed, Talha
    Ahmad, Mahmood
    Taha, Abubakr Taha Bakheit
    Babur, Muhammad
    Kubinska-Jabcon, Ewa
    Badshah, Muhammad Usman
    JOURNAL OF HYDROINFORMATICS, 2025, 27 (02) : 123 - 140