Quasi-triangular pre-Lie bialgebras, factorizable pre-Lie bialgebras and Rota-Baxter pre-Lie algebras

被引:2
作者
Wang, You [1 ]
Bai, Chengming [2 ,3 ]
Liu, Jiefeng [4 ]
Sheng, Yunhe [1 ]
机构
[1] Jilin Univ, Dept Math, Changchun 130012, Jilin, Peoples R China
[2] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[3] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[4] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
关键词
Quasi-triangular pre-Lie bialgebra; Factorizable pre-Lie bialgebra; Quadratic Rota-Baxter pre-Lie algebra; Rota-Baxter pre-Lie bialgebra; Matched pair of Rota-Baxter pre-Lie algebras; OPERATORS; BRACKETS; GEOMETRY; EQUATION; KAHLER;
D O I
10.1016/j.geomphys.2024.105146
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, first we introduce the notions of quasi-triangular pre-Lie bialgebras and factorizable pre-Lie bialgebras. A factorizable pre-Lie bialgebra leads to a factorization of the underlying pre-Lie algebra. We show that the symplectic double of a pre-Lie bialgebra naturally enjoys a factorizable pre-Lie bialgebra structure. Then we give the Rota-Baxter characterization of factorizable pre-Lie bialgebras. More precisely, we introduce the notion of quadratic Rota-Baxter pre-Lie algebras and show that there is a one-to-one correspondence between factorizable pre-Lie bialgebras and quadratic Rota-Baxter pre-Lie algebras. Finally, we develop the theories of matched pairs, bialgebras and Manin triples of Rota-Baxter pre-Lie algebras. In particular, a factorizable pre-Lie bialgebra gives rise to a Rota-Baxter pre-Lie bialgebra, and conversely a Rota-Baxter pre-Lie bialgebra gives rise to a factorizable pre-Lie bialgebra structure on the double space. (c) 2024 Elsevier B.V. All rights reserved.
引用
收藏
页数:22
相关论文
共 39 条
[31]   What a classical r-matrix really is [J].
Kupershmidt, BA .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 1999, 6 (04) :448-488
[32]   Factorizable Lie Bialgebras, Quadratic Rota-Baxter Lie Algebras and Rota-Baxter Lie Bialgebras [J].
Lang, Honglei ;
Sheng, Yunhe .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 397 (02) :763-791
[33]  
Li XX, 2007, J NONLINEAR MATH PHY, V14, P269, DOI 10.2991/jnmp.2007.14.2.9
[34]   F-manifold algebras and deformation quantization via pre-Lie algebras [J].
Liu, Jiefeng ;
Sheng, Yunhe ;
Bai, Chengming .
JOURNAL OF ALGEBRA, 2020, 559 :467-495
[35]  
Ovando G., 2006, BEITRAGE ALGEBRA GEO, P419
[36]  
Reshetikhin N. Yu., 1988, Journal of Geometry and Physics, V5, P533, DOI 10.1016/0393-0440(88)90018-6
[37]  
Semenov-Tian-Shansky MA, 2003, OPER THEORY ADV APPL, V141, P155
[38]  
SEMENOVTYANSHANSKII MA, 1983, FUNCT ANAL APPL+, V17, P259
[39]  
Shima H., 1980, Ann. Inst. Fourier, V30, P91