Quasi-triangular pre-Lie bialgebras, factorizable pre-Lie bialgebras and Rota-Baxter pre-Lie algebras

被引:1
作者
Wang, You [1 ]
Bai, Chengming [2 ,3 ]
Liu, Jiefeng [4 ]
Sheng, Yunhe [1 ]
机构
[1] Jilin Univ, Dept Math, Changchun 130012, Jilin, Peoples R China
[2] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[3] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[4] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
关键词
Quasi-triangular pre-Lie bialgebra; Factorizable pre-Lie bialgebra; Quadratic Rota-Baxter pre-Lie algebra; Rota-Baxter pre-Lie bialgebra; Matched pair of Rota-Baxter pre-Lie algebras; OPERATORS; BRACKETS; GEOMETRY; EQUATION; KAHLER;
D O I
10.1016/j.geomphys.2024.105146
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, first we introduce the notions of quasi-triangular pre-Lie bialgebras and factorizable pre-Lie bialgebras. A factorizable pre-Lie bialgebra leads to a factorization of the underlying pre-Lie algebra. We show that the symplectic double of a pre-Lie bialgebra naturally enjoys a factorizable pre-Lie bialgebra structure. Then we give the Rota-Baxter characterization of factorizable pre-Lie bialgebras. More precisely, we introduce the notion of quadratic Rota-Baxter pre-Lie algebras and show that there is a one-to-one correspondence between factorizable pre-Lie bialgebras and quadratic Rota-Baxter pre-Lie algebras. Finally, we develop the theories of matched pairs, bialgebras and Manin triples of Rota-Baxter pre-Lie algebras. In particular, a factorizable pre-Lie bialgebra gives rise to a Rota-Baxter pre-Lie bialgebra, and conversely a Rota-Baxter pre-Lie bialgebra gives rise to a factorizable pre-Lie bialgebra structure on the double space. (c) 2024 Elsevier B.V. All rights reserved.
引用
收藏
页数:22
相关论文
共 39 条
  • [1] Poisson structures on double Lie groups
    Alekseevsky, D
    Grabowski, J
    Marmo, G
    Michor, PW
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 1998, 26 (3-4) : 340 - 379
  • [2] [Anonymous], 1992, Tokyo J. Math.
  • [3] [Anonymous], 1980, Ann. Inst. Fourier (Grenoble)
  • [4] Quantization and Dynamisation of Trace-Poisson Brackets
    Avan, Jean
    Ragoucy, Eric
    Rubtsov, Vladimir
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 341 (01) : 263 - 287
  • [5] Bai C., 2021, arXiv
  • [6] Bai C., 2021, ALGEBRA APPL 1 NONAS, P245, DOI DOI 10.1002/9781119818175.CH7
  • [7] Left-symmetric bialgebras and an analogue of the classical Yang-Baxter equation
    Bai, Chengming
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2008, 10 (02) : 221 - 260
  • [8] A unified algebraic approach to the classical Yang-Baxter equation
    Bai, Chengming
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (36) : 11073 - 11082
  • [9] Bai CM, 2022, Arxiv, DOI arXiv:2207.08703
  • [10] Nonabelian Generalized Lax Pairs, the Classical Yang-Baxter Equation and PostLie Algebras
    Bai, Chengming
    Guo, Li
    Ni, Xiang
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 297 (02) : 553 - 596