A relay-assisted parallel offloading strategy for multi-source tasks in internet of vehicles

被引:5
作者
Cao, Dun [1 ,2 ]
Zhang, Yingbao [1 ,3 ]
Yang, Yifan [1 ]
Ji, Baofeng [4 ]
Sharma, Pradip Kumar [5 ]
Alfarraj, Osama [6 ]
Tolba, Amr [6 ]
Wang, Jin [1 ]
机构
[1] Changsha Univ Sci & Technol, Sch Comp & Commun Engn, Changsha 410114, Peoples R China
[2] Xiangjiang Lab, Changsha 410205, Peoples R China
[3] Baoji Meteorol Bureau, Baoji 721006, Peoples R China
[4] Henan Univ Sci & Technol, Sch Informat Engn, Luoyang, Henan, Peoples R China
[5] Univ Aberdeen, Dept Comp Sci, Aberdeen AB243FX, Scotland
[6] King Saud Univ, Community Coll, Dept Comp Sci, Riyadh 11437, Saudi Arabia
基金
中国国家自然科学基金;
关键词
Mobile edge computing; Mobility prediction; Relay assistance; Computing offloading; Unequal splitting of tasks; EDGE; COMPUTATION; OPTIMIZATION; COOPERATION; ALGORITHM;
D O I
10.1016/j.seta.2024.103619
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Internet of Vehicles (IoV) is paving the road for the new generation of Intelligent Transportation Systems (ITS), and Mobile Edge Computing (MEC) is enabling IoV to efficiently handle the computation -intensive and time -sensitive tasks. However, this has introduced new challenges such as maximizing computing resources, allocating resources fairly for multi -source tasks concurrently, and dividing tasks for parallelly processing to minimize the latency. To face these challenges, a three-dimensional road vehicle mobility model is constructed, and the problem of offloading strategy and resource allocation among multiple vehicles served by one Road Side Unit (RSU) is investigates to minimize the average latency of multi -source tasks while satisfying the quality of service requirements. To address the Non -deterministic Polynomial -time hardness (NP -hardness) of the problem, we design a Relay -Assisted Parallel Offloading (RAPO) strategy to obtain the optimization solution. Extensive experimental results show that the RAPO strategy introducing relay -assisted nodes can enhance performance in poor scenarios and ensure low -latency multi -tasking under various conditions, especially reducing latency by 39% compared to local computing.
引用
收藏
页数:8
相关论文
共 32 条
[1]   Task Scheduling for Mobile Edge Computing Using Genetic Algorithm and Conflict Graphs [J].
Al-Habob, Ahmed A. ;
Dobre, Octavia A. ;
Garcia Armada, Ana ;
Muhaidat, Sami .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (08) :8805-8819
[2]  
Burer S., 2012, SURV OPER RES MANAGE, V17, P97, DOI DOI 10.1016/J.SORMS.2012.08.001
[3]   Fast Visual Tracking with Squeeze and Excitation Region Proposal Network [J].
Cao, Dun ;
Dai, Renhua ;
Wang, Jin ;
Ji, Baofeng ;
Alfarraj, Osama ;
Tolba, Amr ;
Sharma, Pradip Kumar ;
Zhu, Min .
HUMAN-CENTRIC COMPUTING AND INFORMATION SCIENCES, 2023, 13 :1-20
[4]  
[曹敦 Cao Dun], 2022, [通信学报, Journal on Communications], V43, P185
[5]   BERT-Based Deep Spatial-Temporal Network for Taxi Demand Prediction [J].
Cao, Dun ;
Zeng, Kai ;
Wang, Jin ;
Sharma, Pradip Kumar ;
Ma, Xiaomin ;
Liu, Yonghe ;
Zhou, Siyuan .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (07) :9442-9454
[6]   Joint Computation and Communication Cooperation for Energy-Efficient Mobile Edge Computing [J].
Cao, Xiaowen ;
Wang, Feng ;
Xu, Jie ;
Zhang, Rui ;
Cui, Shuguang .
IEEE INTERNET OF THINGS JOURNAL, 2019, 6 (03) :4188-4200
[7]   Distributed computation offloading method based on deep reinforcement learning in ICV [J].
Chen, Chen ;
Zhang, Yuru ;
Wang, Zheng ;
Wan, Shaohua ;
Pei, Qingqi .
APPLIED SOFT COMPUTING, 2021, 103
[8]  
Dai B, 2022, IEEE Internet Things J, V4662, P1
[9]   Edge Intelligence for Energy-Efficient Computation Offloading and Resource Allocation in 5G Beyond [J].
Dai, Yueyue ;
Zhang, Ke ;
Maharjan, Sabita ;
Zhang, Yan .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (10) :12175-12186
[10]   Joint computation offloading and task caching for multi-user and multi-task MEC systems: reinforcement learning-based algorithms [J].
Elgendy, Ibrahim A. ;
Zhang, Wei-Zhe ;
He, Hui ;
Gupta, Brij B. ;
Abd El-Latif, Ahmed A. .
WIRELESS NETWORKS, 2021, 27 (03) :2023-2038