Correspondence between a new pair of nondifferentiable mixed dual vector programs and higher-order generalized convexity

被引:1
作者
Kailey, N. [1 ]
Sethi, Sonali [1 ]
Dhingra, Vivek [1 ]
机构
[1] Thapar Inst Engn & Technol, Dept Math, Patiala, India
关键词
Multiobjective programming; Higher-order duality; Symmetric duality; Support functions; 2ND-ORDER SYMMETRIC DUALITY;
D O I
10.1007/s12597-023-00732-2
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, a new pair of higher-order nondifferentiable multiobjective mixed symmetric dual programs over arbitrary cones is formulated, where each of the objective functions contains a support function of a compact convex set. Usual duality theorems are established under higher-order K-(F,alpha,rho,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(F,\alpha ,\rho ,d)$$\end{document}-convexity assumptions. Also, the example of a higher-order dual pair, which shows that higher-order provides tighter bounds for the value of the objective function of the primal and dual problem, is given in the paper. Several known results are also discussed as special cases.
引用
收藏
页码:1507 / 1540
页数:34
相关论文
共 39 条
[1]  
Agarwal R.P., 2011, ABSTR APPL ANAL, V2011
[2]   Higher order symmetric duality in nondifferentiable multi-objective programming problems involving generalized cone convex functions [J].
Agarwal, Ravi P. ;
Ahmad, Izhar ;
Jayswal, Anurag .
MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (9-10) :1644-1650
[3]   Higher-order duality in nondifferentiable multiobjective programming [J].
Ahmad, I. ;
Husain, Z. ;
Sharma, Sarita .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2007, 28 (9-10) :989-1002
[4]   Multiobjective mixed symmetric duality involving cones [J].
Ahmad, I. ;
Husain, Z. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (01) :319-326
[5]   Mixed Type Nondifferentiable Higher-Order Symmetric Duality over Cones [J].
Ahmad, Izhar ;
Verma, Khushboo ;
Al-Homidan, Suliman .
SYMMETRY-BASEL, 2020, 12 (02)
[6]   A Newton-type proximal gradient method for nonlinear multi-objective optimization problems [J].
Ansary, Md Abu Talhamainuddin .
OPTIMIZATION METHODS & SOFTWARE, 2023, 38 (03) :570-590
[7]   Chemical reaction optimization algorithm for machining parameter of abrasive water jet cutting [J].
Bhoi, Neeraj Kumar ;
Singh, Harpreet ;
Pratap, Saurabh ;
Jain, Pramod K. .
OPSEARCH, 2022, 59 (01) :350-363
[8]  
Chandra S., 1999, Opsearch, V36, P165
[9]  
Chandra S., 1998, OPTIMIZATION, V43, P1
[10]   Higher-order symmetric duality in nondifferentiable multiobjective programming problems [J].
Chen, XH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 290 (02) :423-435