Machine and Deep Learning: Artificial Intelligence Application in Biotic and Abiotic Stress Management in Plants

被引:5
|
作者
Gou, Caiming [1 ]
Zafar, Sara [2 ]
Fatima [3 ]
Hasnain, Zuhair [4 ]
Aslam, Nazia [2 ]
Iqbal, Naeem [2 ]
Abbas, Sammar [5 ]
Li, Hui [6 ]
Li, Jia [1 ]
Chen, Bo [1 ]
Ragauskas, Arthur J. [7 ,8 ,9 ]
Abbas, Manzar [1 ]
机构
[1] Yibin Univ, Sch Agr Forestry & Food Engn, Yibin 644000, Sichuan, Peoples R China
[2] Govt Coll Univ, Bot Dept, Faisalabad 38000, Punjab, Pakistan
[3] Univ Karachi, Dept Math, Karachi 75270, Sindh, Pakistan
[4] PMAS Arid Agr Univ, Rawalpindi 44000, Punjab, Pakistan
[5] Beijing Forestry Univ, Coll Biol Sci & Biotechnol, Beijing 100091, Peoples R China
[6] Inner Mongolia Agr Univ, Coll Forestry, Hohhot 010019, Peoples R China
[7] Univ Tennessee, Dept Forestry Wildlife & Fisheries, Ctr Renewable Carbon, Inst Agr, Knoxville, TN 37996 USA
[8] Oak Ridge Natl Lab, Joint Inst Biol Sci, Biosci Div, Oak Ridge, TN 37831 USA
[9] Univ Tennessee Knoxville, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA
来源
FRONTIERS IN BIOSCIENCE-LANDMARK | 2024年 / 29卷 / 01期
关键词
biotic and abiotic stresses; satellite; unmanned aerial vehicle; smart-phones; artificial intelligence; machine learning; deep; learning; plant phenotyping; ARABIDOPSIS-THALIANA; THERMAL IMAGERY; NEURAL-NETWORK; ROOT; GROWTH; YIELD; WHEAT; SPECTROSCOPY; FLUORESCENCE; ARCHITECTURE;
D O I
10.31083/j.fbl2901020
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Biotic and abiotic stresses significantly affect plant fitness, resulting in a serious loss in food production. Biotic and abiotic stresses predominantly affect metabolite biosynthesis, gene and protein expression, and genome variations. However, light doses of stress result in the production of positive attributes in crops, like tolerance to stress and biosynthesis of metabolites, called hormesis. Advancement in artificial intelligence (AI) has enabled the development of high-throughput gadgets such as high-resolution imagery sensors and robotic aerial vehicles, i.e., satellites and unmanned aerial vehicles (UAV), to overcome biotic and abiotic stresses. These High throughput (HTP) gadgets produce accurate but big amounts of data. Significant datasets such as transportable array for remotely sensed agriculture and phenotyping reference platform (TERRA-REF) have been developed to forecast abiotic stresses and early detection of biotic stresses. For accurately measuring the model plant stress, tools like Deep Learning (DL) and Machine Learning (ML) have enabled early detection of desirable traits in a large population of breeding material and mitigate plant stresses. In this review, advanced applications of ML and DL in plant biotic and abiotic stress management have been summarized.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Decoding the physiological response of plants to stress using deep learning for forecasting crop loss due to abiotic, biotic, and climatic variables
    Mridul Kumar
    Zeeshan Saifi
    Soami Daya Krishnananda
    Scientific Reports, 13
  • [32] Current perspectives of lncRNAs in abiotic and biotic stress tolerance in plants
    Jin, Xin
    Wang, Zemin
    Li, Xuan
    Ai, Qianyi
    Wong, Darren Chern Jan
    Zhang, Feiyan
    Yang, Jiangwei
    Zhang, Ning
    Si, Huaijun
    FRONTIERS IN PLANT SCIENCE, 2024, 14
  • [33] Integrated omics approaches for biotic and abiotic stress tolerance in plants
    Deshmukh, Rupesh
    Gupta, Santosh K.
    Patil, Gunvant B.
    JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY, 2025,
  • [34] Study of the Influence of Abiotic and Biotic Stress Factors on Horticultural Plants
    Hanaka, Agnieszka
    Majewska, Malgorzata
    Jaroszuk-Scisel, Jolanta
    HORTICULTURAE, 2022, 8 (01)
  • [35] Polyamines: Natural and engineered abiotic and biotic stress tolerance in plants
    Hussain, Syed Sarfraz
    Ali, Muhammad
    Ahmad, Maqbool
    Siddique, Kadambot H. M.
    BIOTECHNOLOGY ADVANCES, 2011, 29 (03) : 300 - 311
  • [36] Role of MicroRNAs in Biotic and Abiotic Stress Responses in Crop Plants
    Rajesh Kumar
    Applied Biochemistry and Biotechnology, 2014, 174 : 93 - 115
  • [37] Beneficial microbes ameliorate abiotic and biotic sources of stress on plants
    Porter, Stephanie S.
    Bantay, Roxanne
    Friel, Colleen A.
    Garoutte, Aaron
    Gdanetz, Kristi
    Ibarreta, Kathleen
    Moore, Bethany M.
    Shetty, Prateek
    Siler, Eleanor
    Friesen, Maren L.
    FUNCTIONAL ECOLOGY, 2020, 34 (10) : 2075 - 2086
  • [38] Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants
    Khraiwesh, Basel
    Zhu, Jian-Kang
    Zhu, Jianhua
    BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS, 2012, 1819 (02): : 137 - 148
  • [39] Role of MicroRNAs in Biotic and Abiotic Stress Responses in Crop Plants
    Kumar, Rajesh
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2014, 174 (01) : 93 - 115
  • [40] Application of seaweed extracts to mitigate biotic and abiotic stresses in plants
    Raja, Bharath
    Vidya, Radhakrishnan
    PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS, 2023, 29 (05) : 641 - 661